Giải ptrinh: `+)“{x+1}/2009+{x+2}/2008={x+2007}/3+{x+2006}/4` 09/11/2021 Bởi Iris Giải ptrinh: `+)“{x+1}/2009+{x+2}/2008={x+2007}/3+{x+2006}/4`
Ta có: `(x+1)/2009+(x+2)/2008=(x+2007)/3+(x+2006)/4` `<=>((x+1)/2009+1)+((x+2)/2008+1)=((x+2007)/3+1)+((x+2006)/4+1)` `<=>(x+2010)/2009+(x+2010)/2008=(x+2010)/3+(x+2010)/4` `<=>(x+2010)/2009+(x+2010)/2008-(x+2010)/3-(x+2010)/4=0` `<=>(x+2010)(1/2009+1/2008-1/3-1/4)=0` `(1)` Lại có: `1/2009<1/4=>1/2009-1/4<0` `1/2008<1/3=>1/2008-1/3<0` `=>1/2009+1/2008-1/3-1/4<0` Nên `(1)` xảy ra `<=>x+2010=0` `<=>x=-2010` Vậy phương trình có nghiệm duy nhất `S={-2010}` Bình luận
`(x+1)/2009+(x+2)/2008=(x+2007)/3+(x+2006)/4` `⇒[(x+1)/2009+1]+[(x+2)/2008+1]-[(x+2007)/3+1]-[(x+2006)/4+1]=0` `⇒(x+2010)/2009+(x+2010)/2008-(x+2010)/3-(x+2010)/4=0` `⇒(x+2010)(1/2009+1/2008-1/3-1/4)=0` `⇒x+2010=0⇒x=-2010` Bình luận
Ta có:
`(x+1)/2009+(x+2)/2008=(x+2007)/3+(x+2006)/4`
`<=>((x+1)/2009+1)+((x+2)/2008+1)=((x+2007)/3+1)+((x+2006)/4+1)`
`<=>(x+2010)/2009+(x+2010)/2008=(x+2010)/3+(x+2010)/4`
`<=>(x+2010)/2009+(x+2010)/2008-(x+2010)/3-(x+2010)/4=0`
`<=>(x+2010)(1/2009+1/2008-1/3-1/4)=0` `(1)`
Lại có:
`1/2009<1/4=>1/2009-1/4<0`
`1/2008<1/3=>1/2008-1/3<0`
`=>1/2009+1/2008-1/3-1/4<0`
Nên `(1)` xảy ra `<=>x+2010=0`
`<=>x=-2010`
Vậy phương trình có nghiệm duy nhất `S={-2010}`
`(x+1)/2009+(x+2)/2008=(x+2007)/3+(x+2006)/4`
`⇒[(x+1)/2009+1]+[(x+2)/2008+1]-[(x+2007)/3+1]-[(x+2006)/4+1]=0`
`⇒(x+2010)/2009+(x+2010)/2008-(x+2010)/3-(x+2010)/4=0`
`⇒(x+2010)(1/2009+1/2008-1/3-1/4)=0`
`⇒x+2010=0⇒x=-2010`