Giải tay dễ hiểu: tập nghiệm log2 ( x^2-x+2)=1 04/08/2021 Bởi Natalia Giải tay dễ hiểu: tập nghiệm log2 ( x^2-x+2)=1
Đáp án: $S = \left\{ {0;1} \right\}$ Giải thích các bước giải: Ta có: $\begin{array}{l}{\log _2}\left( {{x^2} – x + 2} \right) = 1\\ \Leftrightarrow {x^2} – x + 2 = 2\\ \Leftrightarrow {x^2} – x = 0\\ \Leftrightarrow x\left( {x – 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\end{array} \right.\end{array}$ Vậy tập nghiệm của của phương trình là: $S = \left\{ {0;1} \right\}$ Bình luận
Đáp án:
$S = \left\{ {0;1} \right\}$
Giải thích các bước giải:
Ta có:
$\begin{array}{l}
{\log _2}\left( {{x^2} – x + 2} \right) = 1\\
\Leftrightarrow {x^2} – x + 2 = 2\\
\Leftrightarrow {x^2} – x = 0\\
\Leftrightarrow x\left( {x – 1} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x = 0\\
x = 1
\end{array} \right.
\end{array}$
Vậy tập nghiệm của của phương trình là: $S = \left\{ {0;1} \right\}$