Giải và biện luận các pt sau theo tham số m a,m^2x+3mx+1=m^2-2x b, m^2(x-1)+3mx=(m^2+3)x-1 10/09/2021 Bởi Serenity Giải và biện luận các pt sau theo tham số m a,m^2x+3mx+1=m^2-2x b, m^2(x-1)+3mx=(m^2+3)x-1
\(\begin{array}{l} a)\,\,{m^2}x + 3mx + 1 = {m^2} – 2x\\ \Leftrightarrow \left( {{m^2} + 3m + 2} \right)x = {m^2} – 1\\ \Leftrightarrow \left( {m + 1} \right)\left( {m + 2} \right)x = \left( {m + 1} \right)\left( {m – 1} \right)\,\,\,\left( * \right)\\ + )\,\,\,Voi\,\,\,m = – 1 \Rightarrow \left( * \right) \Leftrightarrow 0x = 0\\ \Rightarrow pt\,\,co\,\,\,vo\,\,so\,\,nghiem.\\ + )\,\,Voi\,\,m = – 2 \Rightarrow \left( * \right) \Leftrightarrow 0x = 3\\ \Rightarrow pt\,\,vo\,\,nghiem.\\ + )\,\,\,Voi\,\,\,\left\{ \begin{array}{l} m \ne – 1\\ m \ne – 2 \end{array} \right. \Rightarrow \left( * \right) \Leftrightarrow \left( {m + 2} \right)x = m – 1 \Leftrightarrow x = \frac{{m – 1}}{{m + 2}}\\ \Rightarrow pt\,\,co\,\,nghiem\,\,duy\,\,nhat:\,\,x = \frac{{m – 1}}{{m + 2}}.\\ b)\,\,\,{m^2}\left( {x – 1} \right) + 3mx = \left( {{m^2} + 3} \right)x – 1\\ \Leftrightarrow {m^2}x – {m^2} + 3mx – \left( {{m^2} + 3} \right)x = – 1\\ \Leftrightarrow \left( {{m^2} + 3m – {m^2} – 3} \right) = {m^2} – 1\\ \Leftrightarrow 3\left( {m – 1} \right)x = \left( {m – 1} \right)\left( {m + 1} \right)\,\,\,\,\left( * \right)\\ + )\,\,\,Voi\,\,\,m = 1 \Rightarrow \left( * \right) \Leftrightarrow 0x = 0\\ \Rightarrow pt\,\,co\,\,vo\,\,so\,\,nghiem.\\ + )\,\,\,Voi\,\,m \ne 1 \Rightarrow \left( * \right) \Leftrightarrow 3x = m + 1 \Leftrightarrow x = \frac{{m + 1}}{3}\\ \Rightarrow pt\,\,co\,\,\,nghiem\,\,\,duy\,\,nhat\,\,\,x = \frac{{m + 1}}{3}. \end{array}\) Bình luận
\(\begin{array}{l}
a)\,\,{m^2}x + 3mx + 1 = {m^2} – 2x\\
\Leftrightarrow \left( {{m^2} + 3m + 2} \right)x = {m^2} – 1\\
\Leftrightarrow \left( {m + 1} \right)\left( {m + 2} \right)x = \left( {m + 1} \right)\left( {m – 1} \right)\,\,\,\left( * \right)\\
+ )\,\,\,Voi\,\,\,m = – 1 \Rightarrow \left( * \right) \Leftrightarrow 0x = 0\\
\Rightarrow pt\,\,co\,\,\,vo\,\,so\,\,nghiem.\\
+ )\,\,Voi\,\,m = – 2 \Rightarrow \left( * \right) \Leftrightarrow 0x = 3\\
\Rightarrow pt\,\,vo\,\,nghiem.\\
+ )\,\,\,Voi\,\,\,\left\{ \begin{array}{l}
m \ne – 1\\
m \ne – 2
\end{array} \right. \Rightarrow \left( * \right) \Leftrightarrow \left( {m + 2} \right)x = m – 1 \Leftrightarrow x = \frac{{m – 1}}{{m + 2}}\\
\Rightarrow pt\,\,co\,\,nghiem\,\,duy\,\,nhat:\,\,x = \frac{{m – 1}}{{m + 2}}.\\
b)\,\,\,{m^2}\left( {x – 1} \right) + 3mx = \left( {{m^2} + 3} \right)x – 1\\
\Leftrightarrow {m^2}x – {m^2} + 3mx – \left( {{m^2} + 3} \right)x = – 1\\
\Leftrightarrow \left( {{m^2} + 3m – {m^2} – 3} \right) = {m^2} – 1\\
\Leftrightarrow 3\left( {m – 1} \right)x = \left( {m – 1} \right)\left( {m + 1} \right)\,\,\,\,\left( * \right)\\
+ )\,\,\,Voi\,\,\,m = 1 \Rightarrow \left( * \right) \Leftrightarrow 0x = 0\\
\Rightarrow pt\,\,co\,\,vo\,\,so\,\,nghiem.\\
+ )\,\,\,Voi\,\,m \ne 1 \Rightarrow \left( * \right) \Leftrightarrow 3x = m + 1 \Leftrightarrow x = \frac{{m + 1}}{3}\\
\Rightarrow pt\,\,co\,\,\,nghiem\,\,\,duy\,\,nhat\,\,\,x = \frac{{m + 1}}{3}.
\end{array}\)