Giúp e nhanh nhé ròi nhớ check các câu khác nữa Cho x= $\sqrt[3]{7+\sqrt{\frac{49}{8}}}$ + $\sqrt[3]{7-\sqrt{\frac{49}{8}}}$ Tính R = $(2x^{3} –

Giúp e nhanh nhé ròi nhớ check các câu khác nữa
Cho x= $\sqrt[3]{7+\sqrt{\frac{49}{8}}}$ + $\sqrt[3]{7-\sqrt{\frac{49}{8}}}$
Tính R = $(2x^{3} – 21x – 29)^{2020}$

0 bình luận về “Giúp e nhanh nhé ròi nhớ check các câu khác nữa Cho x= $\sqrt[3]{7+\sqrt{\frac{49}{8}}}$ + $\sqrt[3]{7-\sqrt{\frac{49}{8}}}$ Tính R = $(2x^{3} –”

  1. Đáp án:

     

    Giải thích các bước giải: Ghi nhớ với dạng nầy thì đặt:

    $ a = 7 + \sqrt[]{\frac{49}{8}}; b = 7 + \sqrt[]{\frac{49}{8}} ⇒ a + b = 14$ 

    $ ⇒ ab = 7² – (\sqrt[]{\frac{49}{8}})² = 49 – \frac{49}{8} = (\frac{7}{2})³$

    $ ⇒ x = \sqrt[3]{a} + \sqrt[3]{b} ⇒ x³ = (\sqrt[3]{a} + \sqrt[3]{b})³$ 

    $ = (\sqrt[3]{a})³ + (\sqrt[3]{b})³ + 3\sqrt[3]{a}.\sqrt[3]{b}(\sqrt[3]{a} + \sqrt[3]{b})$

    $ = a + b + 3\sqrt[3]{ab}.x = 14 + 3(\frac{7}{2})x$

    $ ⇒ 2x³ = 28 + 21x ⇔ 2x³ – 21x – 29 = 1$

    $ ⇒ (2x³ – 21x – 29)^{2020} = 1$

     

    Bình luận

Viết một bình luận