giúp mik vs
đề bài : tìm x
$\frac{1}{x. (x+1)}$+ $\frac{1}{(x+1). (x+2)}$ $\frac{1}{(x+2 . (x+3)}$ -$\frac{1}{x}$ =$\frac{1}{2010}$
giúp mik vs
đề bài : tìm x
$\frac{1}{x. (x+1)}$+ $\frac{1}{(x+1). (x+2)}$ $\frac{1}{(x+2 . (x+3)}$ -$\frac{1}{x}$ =$\frac{1}{2010}$
Đáp án:
Giải thích các bước giải:
$\dfrac{1}{x.(x+1)}+\dfrac{1}{(x+1).(x+2)}+\dfrac{1}{(x+2).(x+3)}-\dfrac{1}{x}=\dfrac{1}{2010}$
$ $
$⇒\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}-\dfrac{1}{x}=\dfrac{1}{2010}$
$ $
$⇒\dfrac{-1}{x+3}=\dfrac{1}{2010}$
$ $
$⇒x+3=-2010$
$⇒x=-2013$
Mk trình bày dưới hình nha