giúp mik vs GIẢI PT vô tỉ a)√x ²-4x+3 + √x ²+x= √3x ²+4x+1 b) x √x+1 + √x ²-x+1=x+ √x ²+1 c) √2x ²+x+1 + √x ²-x+1=3x 04/11/2021 Bởi aikhanh giúp mik vs GIẢI PT vô tỉ a)√x ²-4x+3 + √x ²+x= √3x ²+4x+1 b) x √x+1 + √x ²-x+1=x+ √x ²+1 c) √2x ²+x+1 + √x ²-x+1=3x
Điều kiện: $x\ge -1$ $x\sqrt{x+1}+\sqrt{x^2-x+1}=x+\sqrt{x^3+1}$ $↔x\sqrt{x+1}+\sqrt{x^2-x+1}-x-\sqrt{x^3+1}=0$ $↔(x\sqrt{x+1}-x)-(\sqrt{x^3+1}-\sqrt{x^2-x+1})=0$ $↔x(\sqrt{x+1}-1)-[\sqrt{(x+1)(x^2-x+1)}-\sqrt{x^2-x+1}]=0$ $↔x(\sqrt{x+1}-1)-\sqrt{x^2-x+1}(\sqrt{x+1}-1)=0$ $↔(\sqrt{x+1}-1)(x-\sqrt{x^2-x+1})=0$ $↔\left[\begin{array}{l}\sqrt{x+1}-1=0\\x-\sqrt{x^2-x+1}=0\end{array}\right.↔\left[\begin{array}{l}\sqrt{x+1}=1\\\sqrt{x^2-x+1}=x\end{array}\right.$ $↔\left[\begin{array}{l}x+1=1\\x^2-x+1=x^2\end{array}\right.↔\left[\begin{array}{l}x=0\\x=1\end{array}\right.$ Vậy phương trình có tập nghiệm $S=\{0;1\}$ Bình luận
Điều kiện: $x\ge -1$
$x\sqrt{x+1}+\sqrt{x^2-x+1}=x+\sqrt{x^3+1}$
$↔x\sqrt{x+1}+\sqrt{x^2-x+1}-x-\sqrt{x^3+1}=0$
$↔(x\sqrt{x+1}-x)-(\sqrt{x^3+1}-\sqrt{x^2-x+1})=0$
$↔x(\sqrt{x+1}-1)-[\sqrt{(x+1)(x^2-x+1)}-\sqrt{x^2-x+1}]=0$
$↔x(\sqrt{x+1}-1)-\sqrt{x^2-x+1}(\sqrt{x+1}-1)=0$
$↔(\sqrt{x+1}-1)(x-\sqrt{x^2-x+1})=0$
$↔\left[\begin{array}{l}\sqrt{x+1}-1=0\\x-\sqrt{x^2-x+1}=0\end{array}\right.↔\left[\begin{array}{l}\sqrt{x+1}=1\\\sqrt{x^2-x+1}=x\end{array}\right.$
$↔\left[\begin{array}{l}x+1=1\\x^2-x+1=x^2\end{array}\right.↔\left[\begin{array}{l}x=0\\x=1\end{array}\right.$
Vậy phương trình có tập nghiệm $S=\{0;1\}$