Giúp mình bài này nhé =(
Suppose f(x) is a rational function such that `3f(1/x)+(2f(x))/x=x^2`
Find `f(-2)`
Giải = TA luôn ạ
Giúp mình bài này nhé =(
Suppose f(x) is a rational function such that `3f(1/x)+(2f(x))/x=x^2`
Find `f(-2)`
Giải = TA luôn ạ
Solution:
$f(-2)= \dfrac{67}{20}$
Step by step solution:
$\quad 3f\left(\dfrac1x\right) + \dfrac{2f(x)}{x}= x^2$
$+)\quad$ With $x = -2$, we get:
$3f\left(-\dfrac12\right) – f(-2)= 4$
It’s equal to:
$f\left(-\dfrac12\right)= \dfrac{4 + f(-2)}{3}$
$+)\quad$ With $x = -\dfrac12$, we get:
$3f(-2) – 4f\left(-\dfrac12\right)= \dfrac14$
Then:
$3f(-2) – 4\cdot \dfrac{4+ f(-2)}{3}= \dfrac14$
Or:
$\dfrac{5f(-2)}{3} = \dfrac{67}{12}$
So that:
$f(-2)= \dfrac{67}{20}$
Answer: $f(-2)= \dfrac{67}{20}$
Em lớp 7 nên trình bày hơi lằng nhằng ạ.