Giúp Mình Lần III $\mathop {\lim }\limits_{x \to +\infty} \dfrac{2x^4+x^3-2x^2-3}{x-2x^4}$ 19/10/2021 Bởi Adalyn Giúp Mình Lần III $\mathop {\lim }\limits_{x \to +\infty} \dfrac{2x^4+x^3-2x^2-3}{x-2x^4}$
$\lim\limits_{x\to +\infty}\dfrac{2x^4+x^3-2x^2-3}{x-2x^4}$ $=\lim\limits_{x\to +\infty}\dfrac{2+\dfrac{1}{x}-\dfrac{2}{x^2}-\dfrac{3}{x^4} }{\dfrac{1}{x^3}-2}$ $=\dfrac{2}{-2}=-1$ Bình luận
$\mathop {\lim }\limits_{x \to +\infty} \dfrac{2x^4+x^3-2x^2-3}{x-2x^4}$ $\mathop {\lim }\limits_{x \to +\infty} \dfrac{2+\dfrac{1}{x}-\dfrac{2}{x^2}-\dfrac{3}{x^4}}{\dfrac{1}{x^3}-2}$ $=-1$ Bình luận
$\lim\limits_{x\to +\infty}\dfrac{2x^4+x^3-2x^2-3}{x-2x^4}$
$=\lim\limits_{x\to +\infty}\dfrac{2+\dfrac{1}{x}-\dfrac{2}{x^2}-\dfrac{3}{x^4} }{\dfrac{1}{x^3}-2}$
$=\dfrac{2}{-2}=-1$
$\mathop {\lim }\limits_{x \to +\infty} \dfrac{2x^4+x^3-2x^2-3}{x-2x^4}$
$\mathop {\lim }\limits_{x \to +\infty} \dfrac{2+\dfrac{1}{x}-\dfrac{2}{x^2}-\dfrac{3}{x^4}}{\dfrac{1}{x^3}-2}$
$=-1$