giúp mình với ạ Cho tứ giác ABCD có o là giao điểm 2 đường chéo biết S∆ABO=4; S∆COD=9 tìm gtnn của Tg abcd

giúp mình với ạ
Cho tứ giác ABCD có o là giao điểm 2 đường chéo biết S∆ABO=4; S∆COD=9
tìm gtnn của Tg abcd

0 bình luận về “giúp mình với ạ Cho tứ giác ABCD có o là giao điểm 2 đường chéo biết S∆ABO=4; S∆COD=9 tìm gtnn của Tg abcd”

  1. Giải thích các bước giải:

    $\begin{array}{l} {S_{ABCD}} = {S_{AOB}} + {S_{COD}} + ({S_{BOC}} + {S_{AOD}})\\  = 13 + ({S_{BOC}} + {S_{AOD}}) \end{array}$

    Để ${S_{ABCD}}$ min thì ${S_{BOC}} + {S_{AOD}}$ min

    Theo BĐT Cosi cho 2 số dương ta có:

    ${S_{BOC}} + {S_{AOD}} \ge 2\sqrt {{S_{BOC}}.{S_{AOD}}} 4

    Dấu = xảy ra khi và chỉ khi ${{S_{BOC}} = {S_{AOD}}}$

    Vì ΔAOD và ΔAOB có chung đường cao vẽ từ A nên

    ${S_{AOB}}.{S_{BOD}} = OB.OD.\frac{{A{H^2}}}{4}(1)$

    Tương tự đối với ΔCOB và ΔCOD: ${S_{COB}}.{S_{COD}} = OB.OD.\frac{{C{H^2}}}{4}(2)$

    Từ (1) và (2)

    => SAOB . SCOD = SAOD . SCOB

    => ${S_{BOC}} + {S_{AOD}} \ge 2\sqrt {{S_{AOB}}.{S_{COD}}}  = 12$

    => ${S_{ABCD}} \ge 25$

    Bình luận

Viết một bình luận