Gọi A (a,b) là điểm đối xứng của B (2,1) qua d:x-3y+4=0 . khi đó a+b là 05/11/2021 Bởi Isabelle Gọi A (a,b) là điểm đối xứng của B (2,1) qua d:x-3y+4=0 . khi đó a+b là
Đáp án: $a+b=\dfrac{21}2$ Giải thích các bước giải: Vì $A(a,b)$ là điểm đối xứng của $B(2,1)$ qua (d) $\to AB\perp d$ Mà $\vec{BA}=(a-2,b-1)\to \dfrac{a-2}{1}=\dfrac{b-1}{-3}\to b=-3a+7$ Lại có : $I(\dfrac{a+2}{2},\dfrac{b+1}{2})$ là trung điểm AB$\to I\in (d)$ $\to \dfrac{a+2}{2}-\dfrac{3(b+1)}{2}+4=0$ $\to \dfrac{a+2}{2}-\dfrac{3(3a+7+1)}{2}+4=0$ $\to a=-\dfrac74$ $\to b=\dfrac{49}{4}$ $\to a+b=\dfrac{21}2$ Bình luận
Đáp án: $a+b=\dfrac{21}2$
Giải thích các bước giải:
Vì $A(a,b)$ là điểm đối xứng của $B(2,1)$ qua (d)
$\to AB\perp d$
Mà $\vec{BA}=(a-2,b-1)\to \dfrac{a-2}{1}=\dfrac{b-1}{-3}\to b=-3a+7$
Lại có : $I(\dfrac{a+2}{2},\dfrac{b+1}{2})$ là trung điểm AB
$\to I\in (d)$
$\to \dfrac{a+2}{2}-\dfrac{3(b+1)}{2}+4=0$
$\to \dfrac{a+2}{2}-\dfrac{3(3a+7+1)}{2}+4=0$
$\to a=-\dfrac74$
$\to b=\dfrac{49}{4}$
$\to a+b=\dfrac{21}2$