`GPT` `1/(x^2+2x+2)^2+1/(x^2+2x+3)^2=5/4`

`GPT`
`1/(x^2+2x+2)^2+1/(x^2+2x+3)^2=5/4`

0 bình luận về “`GPT` `1/(x^2+2x+2)^2+1/(x^2+2x+3)^2=5/4`”

  1. đặt `x^2+2x+3=a`

    `⇔1/(a-1)^2+1/a^2=5/4`

    `⇔(2a^2-2a+1)/((a^2-2a+1)a^2)=5/4`

    `⇔8a^2-8a+4=5a^4-10a^3+5a^2`

    `⇔-5x^4-10a^3+3a^2+8a+4=0`

    `⇔(1-a)(a+2)(5a^2+5a+2)=0`

    `⇔`\(\left[ \begin{array}{l}a=1\\a=-2\end{array} \right.\)  `(vì 5a^2+5a+2>0)`

    `⇒x=-1`

     

    Bình luận
  2. Đặt `x^2+2x+2=t`

    PT `<=>1/t^2 + 1/(t+1)^2=5/4`

    `<=>1/t^2 + 1/(t^2+2t+1)=5/4`

    `<=>(2t^2+2t+1)/(t^2(t^2+2t+1))=5/4`

    `<=>8t^2+8t+4=5t^4+10t^3+5t^2`

    `<=>5t^4+10t^3-3t^2-8t-4=0`

    `<=> (t-1)(t+2)(5t^2+5t+2)=0`

    `<=>t in {1;-2}`

    Vs `t=1 <=>(x+1)^2=0<=>x=-1`

    Vs `t=-2 <=>x^2+2x+2=-2` (vô lí)

    Vậy `S={-1}`

    Bình luận

Viết một bình luận