$GPT$ $\sqrt[]{2x^2-3x+1}$ + $\sqrt[]{x^2+x-2}$ = $\sqrt[]{3x^2-4x+1}$ 26/07/2021 Bởi Kylie $GPT$ $\sqrt[]{2x^2-3x+1}$ + $\sqrt[]{x^2+x-2}$ = $\sqrt[]{3x^2-4x+1}$
Đáp án: \[x = 1\,\,\,\,hoặc\,\,\,\,\,x = \frac{{ – 3 – \sqrt {33} }}{4}\] Giải thích các bước giải: ĐKXĐ: \(\left\{ \begin{array}{l}2{x^2} – 3x + 1 \ge 0\\{x^2} + x – 2 \ge 0\\3{x^2} – 4x + 1 \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left( {x – 1} \right)\left( {2x – 1} \right) \ge 0\\\left( {x – 1} \right)\left( {x + 2} \right) \ge 0\\\left( {x – 1} \right)\left( {3x – 1} \right) \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x \ge 1\\x \le \frac{1}{2}\end{array} \right.\\\left[ \begin{array}{l}x \ge 1\\x \le – 2\end{array} \right.\\\left[ \begin{array}{l}x \ge 1\\x \le \frac{1}{3}\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x \ge 1\\x \le – 2\end{array} \right.\) Ta có: \(\begin{array}{l}TH1:\,\,\,\,x \ge 1\\\sqrt {2{x^2} – 3x + 1} + \sqrt {{x^2} + x – 2} = \sqrt {3{x^2} – 4x + 1} \\ \Leftrightarrow \sqrt {\left( {2x – 1} \right)\left( {x – 1} \right)} + \sqrt {\left( {x + 2} \right)\left( {x – 1} \right)} = \sqrt {\left( {3x – 1} \right)\left( {x – 1} \right)} \\ \Leftrightarrow \sqrt {x – 1} .\sqrt {2x – 1} + \sqrt {x – 1} .\sqrt {x + 2} – \sqrt {3x – 1} .\sqrt {x – 1} = 0\\ \Leftrightarrow \sqrt {x – 1} .\left( {\sqrt {2x – 1} + \sqrt {x + 2} – \sqrt {3x – 1} } \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}\sqrt {x – 1} = 0\\\sqrt {2x – 1} + \sqrt {x + 2} – \sqrt {3x – 1} = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\\sqrt {2x – 1} + \sqrt {x + 2} = \sqrt {3x – 1} \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\2x – 1 + 2.\sqrt {\left( {2x – 1} \right)\left( {x + 2} \right)} + x + 2 = 3x – 1\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\3x + 2 + 2\sqrt {\left( {2x – 1} \right)\left( {x + 2} \right)} = 3x – 1\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\2\sqrt {\left( {2x – 1} \right)\left( {x + 2} \right)} = – 3\,\,\,\,\,\,\,\,\,\,\,\,\left( {vn} \right)\end{array} \right.\\ \Rightarrow x = 1\\TH2:\,\,\,\,\,x \le – 2\\\sqrt {2{x^2} – 3x + 1} + \sqrt {{x^2} + x – 2} = \sqrt {3{x^2} – 4x + 1} \\ \Leftrightarrow \sqrt {\left( {2x – 1} \right)\left( {x – 1} \right)} + \sqrt {\left( {x + 2} \right)\left( {x – 1} \right)} = \sqrt {\left( {3x – 1} \right)\left( {x – 1} \right)} \\ \Leftrightarrow \sqrt {1 – x} .\sqrt {1 – 2x} + \sqrt {1 – x} .\sqrt { – \left( {x + 2} \right)} = \sqrt {1 – x} .\sqrt {1 – 3x} \\ \Leftrightarrow \sqrt {1 – x} .\left( {\sqrt {1 – 2x} + \sqrt { – x – 2} – \sqrt {1 – 3x} } \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}\sqrt {1 – x} = 0\\\sqrt {1 – 2x} + \sqrt { – x – 2} – \sqrt {1 – 3x} = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {L,\,\,x \le – 2} \right)\\\sqrt {1 – 2x} + \sqrt { – x – 2} = \sqrt {1 – 3x} \end{array} \right.\\ \Leftrightarrow \left( {1 – 2x} \right) + 2.\sqrt {\left( {1 – 2x} \right)\left( { – x – 2} \right)} + \left( { – x – 2} \right) = 1 – 3x\\ \Leftrightarrow 2\sqrt {\left( {1 – 2x} \right)\left( { – x – 2} \right)} = 2\\ \Leftrightarrow \sqrt {\left( {1 – 2x} \right)\left( { – x – 2} \right)} = 1\\ \Leftrightarrow 2{x^2} + 3x – 2 = 1\\ \Leftrightarrow 2{x^2} + 3x – 3 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{{ – 3 – \sqrt {33} }}{4}\\x = \frac{{ – 3 + \sqrt {33} }}{4}\end{array} \right.\\x \le – 2 \Rightarrow x = \frac{{ – 3 – \sqrt {33} }}{4}\end{array}\) Vậy \(x = 1\,\,\,\,hoặc\,\,\,\,\,x = \frac{{ – 3 – \sqrt {33} }}{4}\) Bình luận
Đáp án:
\[x = 1\,\,\,\,hoặc\,\,\,\,\,x = \frac{{ – 3 – \sqrt {33} }}{4}\]
Giải thích các bước giải:
ĐKXĐ: \(\left\{ \begin{array}{l}
2{x^2} – 3x + 1 \ge 0\\
{x^2} + x – 2 \ge 0\\
3{x^2} – 4x + 1 \ge 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
\left( {x – 1} \right)\left( {2x – 1} \right) \ge 0\\
\left( {x – 1} \right)\left( {x + 2} \right) \ge 0\\
\left( {x – 1} \right)\left( {3x – 1} \right) \ge 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
\left[ \begin{array}{l}
x \ge 1\\
x \le \frac{1}{2}
\end{array} \right.\\
\left[ \begin{array}{l}
x \ge 1\\
x \le – 2
\end{array} \right.\\
\left[ \begin{array}{l}
x \ge 1\\
x \le \frac{1}{3}
\end{array} \right.
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x \ge 1\\
x \le – 2
\end{array} \right.\)
Ta có:
\(\begin{array}{l}
TH1:\,\,\,\,x \ge 1\\
\sqrt {2{x^2} – 3x + 1} + \sqrt {{x^2} + x – 2} = \sqrt {3{x^2} – 4x + 1} \\
\Leftrightarrow \sqrt {\left( {2x – 1} \right)\left( {x – 1} \right)} + \sqrt {\left( {x + 2} \right)\left( {x – 1} \right)} = \sqrt {\left( {3x – 1} \right)\left( {x – 1} \right)} \\
\Leftrightarrow \sqrt {x – 1} .\sqrt {2x – 1} + \sqrt {x – 1} .\sqrt {x + 2} – \sqrt {3x – 1} .\sqrt {x – 1} = 0\\
\Leftrightarrow \sqrt {x – 1} .\left( {\sqrt {2x – 1} + \sqrt {x + 2} – \sqrt {3x – 1} } \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\sqrt {x – 1} = 0\\
\sqrt {2x – 1} + \sqrt {x + 2} – \sqrt {3x – 1} = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 1\\
\sqrt {2x – 1} + \sqrt {x + 2} = \sqrt {3x – 1}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 1\\
2x – 1 + 2.\sqrt {\left( {2x – 1} \right)\left( {x + 2} \right)} + x + 2 = 3x – 1
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 1\\
3x + 2 + 2\sqrt {\left( {2x – 1} \right)\left( {x + 2} \right)} = 3x – 1
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 1\\
2\sqrt {\left( {2x – 1} \right)\left( {x + 2} \right)} = – 3\,\,\,\,\,\,\,\,\,\,\,\,\left( {vn} \right)
\end{array} \right.\\
\Rightarrow x = 1\\
TH2:\,\,\,\,\,x \le – 2\\
\sqrt {2{x^2} – 3x + 1} + \sqrt {{x^2} + x – 2} = \sqrt {3{x^2} – 4x + 1} \\
\Leftrightarrow \sqrt {\left( {2x – 1} \right)\left( {x – 1} \right)} + \sqrt {\left( {x + 2} \right)\left( {x – 1} \right)} = \sqrt {\left( {3x – 1} \right)\left( {x – 1} \right)} \\
\Leftrightarrow \sqrt {1 – x} .\sqrt {1 – 2x} + \sqrt {1 – x} .\sqrt { – \left( {x + 2} \right)} = \sqrt {1 – x} .\sqrt {1 – 3x} \\
\Leftrightarrow \sqrt {1 – x} .\left( {\sqrt {1 – 2x} + \sqrt { – x – 2} – \sqrt {1 – 3x} } \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\sqrt {1 – x} = 0\\
\sqrt {1 – 2x} + \sqrt { – x – 2} – \sqrt {1 – 3x} = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {L,\,\,x \le – 2} \right)\\
\sqrt {1 – 2x} + \sqrt { – x – 2} = \sqrt {1 – 3x}
\end{array} \right.\\
\Leftrightarrow \left( {1 – 2x} \right) + 2.\sqrt {\left( {1 – 2x} \right)\left( { – x – 2} \right)} + \left( { – x – 2} \right) = 1 – 3x\\
\Leftrightarrow 2\sqrt {\left( {1 – 2x} \right)\left( { – x – 2} \right)} = 2\\
\Leftrightarrow \sqrt {\left( {1 – 2x} \right)\left( { – x – 2} \right)} = 1\\
\Leftrightarrow 2{x^2} + 3x – 2 = 1\\
\Leftrightarrow 2{x^2} + 3x – 3 = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{{ – 3 – \sqrt {33} }}{4}\\
x = \frac{{ – 3 + \sqrt {33} }}{4}
\end{array} \right.\\
x \le – 2 \Rightarrow x = \frac{{ – 3 – \sqrt {33} }}{4}
\end{array}\)
Vậy \(x = 1\,\,\,\,hoặc\,\,\,\,\,x = \frac{{ – 3 – \sqrt {33} }}{4}\)