$H=\frac{10}{56}+$$\frac{10}{140}+$$\frac{10}{260}+…$$\frac{10}{1400}$ 07/08/2021 Bởi Savannah $H=\frac{10}{56}+$$\frac{10}{140}+$$\frac{10}{260}+…$$\frac{10}{1400}$
Đáp án: `H = 5/14` Giải thích các bước giải: `H = 10/56 + 10/140 + 10/260 + … + 10/1400` `= 5/28 + 5/70 + 5/130 + … + 5/700` `= 5/(4.7) + 5/(7.10) + 5/(10.13) + … + 5/(25.28)` `= 5/3 . (3/(4.7) + 3/(7.10) + 3/(10.13) + … + 3/(25.28))` `= 5/3 . (1/4 – 1/7 + 1/7 – 1/10 + 1/10 – 1/13 + … + 1/25 – 1/28)` `= 5/3 . (1/4 – 1/28)` `= 5/3 . (7/28 – 1/28)` `= 5/3 . 3/14` `= 5/14` Bình luận
H=`10/56`+`10/140`+…+`10/1400` H=`5/28`+`5/70`+…+`5/700` H=`5/(4*7)`+`5/(7*10)`+…+`5/(25*28)` H=`1/3`*(`5/4`-`5/7`+`5/7`-`5/10`+…+`5/25`-`5/28` H=`1/3`*(`5/4`-`5/28`) H=`1/3`*`15/14` H=`5/14` Bình luận
Đáp án: `H = 5/14`
Giải thích các bước giải:
`H = 10/56 + 10/140 + 10/260 + … + 10/1400`
`= 5/28 + 5/70 + 5/130 + … + 5/700`
`= 5/(4.7) + 5/(7.10) + 5/(10.13) + … + 5/(25.28)`
`= 5/3 . (3/(4.7) + 3/(7.10) + 3/(10.13) + … + 3/(25.28))`
`= 5/3 . (1/4 – 1/7 + 1/7 – 1/10 + 1/10 – 1/13 + … + 1/25 – 1/28)`
`= 5/3 . (1/4 – 1/28)`
`= 5/3 . (7/28 – 1/28)`
`= 5/3 . 3/14`
`= 5/14`
H=`10/56`+`10/140`+…+`10/1400`
H=`5/28`+`5/70`+…+`5/700`
H=`5/(4*7)`+`5/(7*10)`+…+`5/(25*28)`
H=`1/3`*(`5/4`-`5/7`+`5/7`-`5/10`+…+`5/25`-`5/28`
H=`1/3`*(`5/4`-`5/28`)
H=`1/3`*`15/14`
H=`5/14`