Helpppp CMR : sinxcosxcos2xcos4xcos8x = 1/16sin16x 11/11/2021 Bởi Melody Helpppp CMR : sinxcosxcos2xcos4xcos8x = 1/16sin16x
$VT= sinxcosxcos2xcos4xcos8x$ $= \frac{1}{2}sin2xcos2xcos4xcos8x$ $= \frac{1}{4}sin4xcos4xcos8x$ $= \frac{1}{8}sin8xcos8x$ $= \frac{1}{16}sin16x= VP$ (dpcm) Bình luận
Đáp án: Giải thích các bước giải: =>1/2sin2xcos2xcos4xcos8x=1/16sin16x 1/2.1/2sin4xcos4xcos8x=1/16sin16x 1/2.1/2.1/2sin8xcos8x=1/16sin16x 1/2.1/2.1/2.1/2sin16x=1/16sin16x 1/16sin16x=1/16sin16x Bình luận
$VT= sinxcosxcos2xcos4xcos8x$
$= \frac{1}{2}sin2xcos2xcos4xcos8x$
$= \frac{1}{4}sin4xcos4xcos8x$
$= \frac{1}{8}sin8xcos8x$
$= \frac{1}{16}sin16x= VP$ (dpcm)
Đáp án:
Giải thích các bước giải:
=>1/2sin2xcos2xcos4xcos8x=1/16sin16x
1/2.1/2sin4xcos4xcos8x=1/16sin16x
1/2.1/2.1/2sin8xcos8x=1/16sin16x
1/2.1/2.1/2.1/2sin16x=1/16sin16x
1/16sin16x=1/16sin16x