If `p/a+q/b+r/c=1` and `a/p+b/q+c/r=0` then find the value of the expression `T=p^2/a^2+q^2/b^2+r^2/c^2`

If `p/a+q/b+r/c=1` and `a/p+b/q+c/r=0` then find the value of the expression `T=p^2/a^2+q^2/b^2+r^2/c^2`

0 bình luận về “If `p/a+q/b+r/c=1` and `a/p+b/q+c/r=0` then find the value of the expression `T=p^2/a^2+q^2/b^2+r^2/c^2`”

  1. Đáp án:

     $+)$$\frac{p}{a}+\frac{q}{b}+\frac{r}{c}=1$ 

    $(\frac{p}{a}+\frac{q}{b}+\frac{r}{c})^2=1$ 

    $\frac{p^2}{a^2}+\frac{q^2}{b^2}+\frac{r^2}{c^2}+2(\frac{pq}{ab}+\frac{qr}{bc}+\frac{pr}{ac}) =1$ 

    $T+2(\frac{pqc+qra+prb}{abc}) =1$         (1)

    Other face: $\frac{a}{p}+\frac{b}{q}+\frac{c}{r}=0$ 

    $⇔\frac{pqc+qra+prb}{pqr}=0$

    $⇔pqc+qra+prb=0 $(2)

    $(1),(2)⇒T=1$

    Bình luận
  2. Đáp án:

     

    Giải thích các bước giải:

    Let pa=x,qb=y,rc=z.pa=x,qb=y,rc=z. So given equations are:

    x+y+z=1x+y+z=1 —(1)

    1x+1y+1z=01x+1y+1z=0 —(2)

    Required: x2+y2+z2x2+y2+z2

    From (2), yz+xz+xyxyz=0yz+xz+xyxyz=0

    => yz+xz+xy=0yz+xz+xy=0 —(3)

    Squaring (1) on both sides:

    x2+y2+z2+2(xy+yz+xz)=1x2+y2+z2+2(xy+yz+xz)=1

    => x2+y2+z2+2(0)=1x2+y2+z2+2(0)=1 yz+xz+xy=0∵yz+xz+xy=0

    => x2+y2+z2=1

    Bình luận

Viết một bình luận