$\int\limits^{\frac{\pi}{4}}_0 \dfrac{tan^2x}{cos^2x} \, dx$

$\int\limits^{\frac{\pi}{4}}_0 \dfrac{tan^2x}{cos^2x} \, dx$

0 bình luận về “$\int\limits^{\frac{\pi}{4}}_0 \dfrac{tan^2x}{cos^2x} \, dx$”

  1. $=> \int\limits^{\tfrac{\pi}{4}}_0 \dfrac{\tan^2x}{\cos^2x} \, dx\\ =\int\limits^{\tfrac{\pi}{4}}_0 \tan^2x\, d(\tan x)\\ =\dfrac{1}{3}\tan^3\Bigg\vert^{\tfrac{\pi}{4}}_0\\ =\dfrac{1}{3}$

    Bình luận
  2. $\int\limits^{\tfrac{\pi}{4}}_0 \dfrac{\tan^2x}{\cos^2x} \, dx\\ =\int\limits^{\tfrac{\pi}{4}}_0 \tan^2x\, d(\tan x)\\ =\dfrac{1}{3}\tan^3\Bigg\vert^{\tfrac{\pi}{4}}_0\\ =\dfrac{1}{3}$

     

    Bình luận

Viết một bình luận