Khi nào hàm số y=ax²+bx+c có hai nghiệm trái dấu . Khi nào có 1 nghiệm âm và nghiệm dương. 24/07/2021 Bởi Valerie Khi nào hàm số y=ax²+bx+c có hai nghiệm trái dấu . Khi nào có 1 nghiệm âm và nghiệm dương.
Với $a\ne 0$ Phương trình hai nghiệm trái dấu khi: $+) \Delta=b^2-4ac\ge 0$ $+) P=x_1.x_2=\dfrac{c}{a}<0$ Bình luận
Giải thích các bước giải: \(y=ax^{2}+bx+c\) (*) Xét: \(\Delta =b^{2}-4ac\) \(P=\frac{c}{a}\) (tích 2 nghiệm) Để (*) có 2 nghiệm trái dấu thì: \(\left\{\begin{matrix} \Delta >0 & & \\ P<0 & & \end{matrix}\right.\) Hoặc \(a.c<0\) Hai nghiệm trái dấu là 1 nghiệm âm một nghiệm dương Bình luận
Với $a\ne 0$
Phương trình hai nghiệm trái dấu khi:
$+) \Delta=b^2-4ac\ge 0$
$+) P=x_1.x_2=\dfrac{c}{a}<0$
Giải thích các bước giải:
\(y=ax^{2}+bx+c\) (*)
Xét: \(\Delta =b^{2}-4ac\)
\(P=\frac{c}{a}\) (tích 2 nghiệm)
Để (*) có 2 nghiệm trái dấu thì:
\(\left\{\begin{matrix} \Delta >0
& & \\ P<0
& &
\end{matrix}\right.\)
Hoặc \(a.c<0\)
Hai nghiệm trái dấu là 1 nghiệm âm một nghiệm dương