KHÓ NHA
A =$\frac{\sqrt[]{x}}{2\sqrt[]{x}+1}$+ $\frac{x-1}{2x-\sqrt[]{x}-1}$ .($\frac{2x\sqrt[]{x}-x-\sqrt[]{x}}{x\sqrt[]{x}+1}$- $\frac{x-\sqrt[]{x}}{x-1}$)
a) rút gọn A. Tìm giá trị của A với x = 7- 4$\sqrt[]{3}$
b) Tìm giá trị nhỏ nhất của A
KHÓ NHA
A =$\frac{\sqrt[]{x}}{2\sqrt[]{x}+1}$+ $\frac{x-1}{2x-\sqrt[]{x}-1}$ .($\frac{2x\sqrt[]{x}-x-\sqrt[]{x}}{x\sqrt[]{x}+1}$- $\frac{x-\sqrt[]{x}}{x-1}$)
a) rút gọn A. Tìm giá trị của A với x = 7- 4$\sqrt[]{3}$
b) Tìm giá trị nhỏ nhất của A
Đáp án:
b) \(Min = – \dfrac{1}{3}\)
Giải thích các bước giải:
\(\begin{array}{l}
a)DK:x \ge 0;x \ne 1\\
A = \dfrac{{\sqrt x }}{{2\sqrt x + 1}} + \dfrac{{\left( {\sqrt x – 1} \right)\left( {\sqrt x + 1} \right)}}{{\left( {2\sqrt x + 1} \right)\left( {\sqrt x – 1} \right)}}.\left[ {\dfrac{{2x\sqrt x – x – \sqrt x }}{{\left( {\sqrt x + 1} \right)\left( {x – \sqrt x + 1} \right)}} – \dfrac{{\sqrt x \left( {\sqrt x – 1} \right)}}{{\left( {\sqrt x – 1} \right)\left( {\sqrt x + 1} \right)}}} \right]\\
= \dfrac{{\sqrt x }}{{2\sqrt x + 1}} + \dfrac{{\sqrt x + 1}}{{2\sqrt x + 1}}.\left[ {\dfrac{{2x\sqrt x – x – \sqrt x }}{{\left( {\sqrt x + 1} \right)\left( {x – \sqrt x + 1} \right)}} – \dfrac{{\sqrt x }}{{\sqrt x + 1}}} \right]\\
= \dfrac{{\sqrt x }}{{2\sqrt x + 1}} + \dfrac{{\sqrt x + 1}}{{2\sqrt x + 1}}.\dfrac{{2x\sqrt x – x – \sqrt x – x\sqrt x + x – \sqrt x }}{{\left( {\sqrt x + 1} \right)\left( {x – \sqrt x + 1} \right)}}\\
= \dfrac{{\sqrt x }}{{2\sqrt x + 1}} + \dfrac{{\sqrt x + 1}}{{2\sqrt x + 1}}.\dfrac{{x\sqrt x – 2\sqrt x }}{{\left( {\sqrt x + 1} \right)\left( {x – \sqrt x + 1} \right)}}\\
= \dfrac{{\sqrt x }}{{2\sqrt x + 1}} + \dfrac{{x\sqrt x – 2\sqrt x }}{{\left( {2\sqrt x + 1} \right)\left( {x – \sqrt x + 1} \right)}}\\
= \dfrac{{x\sqrt x – x + \sqrt x + x\sqrt x – 2\sqrt x }}{{\left( {2\sqrt x + 1} \right)\left( {x – \sqrt x + 1} \right)}}\\
= \dfrac{{2x\sqrt x – x – \sqrt x }}{{\left( {2\sqrt x + 1} \right)\left( {x – \sqrt x + 1} \right)}}\\
= \dfrac{{\sqrt x \left( {\sqrt x – 1} \right)\left( {2\sqrt x + 1} \right)}}{{\left( {2\sqrt x + 1} \right)\left( {x – \sqrt x + 1} \right)}}\\
= \dfrac{{x – \sqrt x }}{{x – \sqrt x + 1}}\\
Thay:x = 7 – 4\sqrt 3 \\
= 4 – 2.2.\sqrt 3 + 3 = {\left( {2 – \sqrt 3 } \right)^2}\\
\to A = \dfrac{{7 – 4\sqrt 3 – \sqrt {{{\left( {2 – \sqrt 3 } \right)}^2}} }}{{7 – 4\sqrt 3 – \sqrt {{{\left( {2 – \sqrt 3 } \right)}^2}} + 1}}\\
= \dfrac{{7 – 4\sqrt 3 – 2 + \sqrt 3 }}{{7 – 4\sqrt 3 – 2 + \sqrt 3 + 1}} = \dfrac{{1 – \sqrt 3 }}{3}\\
c)A = \dfrac{{x – \sqrt x }}{{x – \sqrt x + 1}} = \dfrac{{x – \sqrt x + 1 – 1}}{{x – \sqrt x + 1}} = 1 – \dfrac{1}{{x – \sqrt x + 1}}\\
= 1 – \dfrac{1}{{x – 2.\sqrt x .\dfrac{1}{2} + \dfrac{1}{4} + \dfrac{3}{4}}}\\
= 1 – \dfrac{1}{{{{\left( {\sqrt x – \dfrac{1}{2}} \right)}^2} + \dfrac{3}{4}}}\\
Do:{\left( {\sqrt x – \dfrac{1}{2}} \right)^2} \ge 0\forall x \ge 0\\
\to {\left( {\sqrt x – \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} \ge \dfrac{3}{4}\\
\to \dfrac{1}{{{{\left( {\sqrt x – \dfrac{1}{2}} \right)}^2} + \dfrac{3}{4}}} \le \dfrac{4}{3}\\
\to – \dfrac{1}{{{{\left( {\sqrt x – \dfrac{1}{2}} \right)}^2} + \dfrac{3}{4}}} \ge – \dfrac{4}{3}\\
\to 1 – \dfrac{1}{{{{\left( {\sqrt x – \dfrac{1}{2}} \right)}^2} + \dfrac{3}{4}}} \ge – \dfrac{1}{3}\\
\to Min = – \dfrac{1}{3}\\
\Leftrightarrow \sqrt x – \dfrac{1}{2} = 0\\
\Leftrightarrow x = \dfrac{1}{4}
\end{array}\)