Kiếm 5 câu phân tích đa thức thành nhân tử bằng phương pháp thêm bớt hạng tử,có giải luôn nhé 05/11/2021 Bởi Elliana Kiếm 5 câu phân tích đa thức thành nhân tử bằng phương pháp thêm bớt hạng tử,có giải luôn nhé
`a)` `x^4+4` `=x^4+4+4x^2-4x^2` `=(x^4+4x^2+4)-4x^2` `=(x^2+2)^2-4x^2` `=(x^2+2-2x)(x^2+2+2x)` `b)` `4x^4+81` `=4x^4+36x^2+81-36x^2` `=(4x^4+36x^2+81)-36x^2` `=(2x^2+9)^2-36x^2` `=(2x^2+9+6x)(2x^2+9-6x)` `c)` `x^7+x^2+1` `=(x^7-x)+(x^2+x+1)` `=x(x^6-1)+(x^2+x+1)` `=x(x^3-1)(x^3+1)+(x^2+x+1)` `=x(x-1)(x^2+x+1)(x^3+1)+(x^2+x+1)` `=(x^2+x+1)[x(x-1)(x^3+1)+1]` `=(x^2+x+1)(x^5-x^4+x^2-x+1)` `d)` `x^7+x^5+1` `=(x^7-x)+(x^5-x^2)+(x^2+x+1)` `=x(x^3-1)(x^3+1)+x^2(x^3-1)+(x^2+x+1)` `=(x^2+x+1)(x-1)(x^4+x)+x^2(x-1)(x^2+x+1)+(x^2+x+1)` `=(x^2+x+1)[(x^5-x^4+x^2-x)+(x^3-x^2)+1]` `=(x^2+x+1)(x^5-x^4+x^3-x+1)` `e)` `x^5-x^4-1` `=x^5-x^4+x^3-x^2+x^2-x+x-1` `=x^4(x-1)+x^2(x-1)+x(x-1)+(x-1)` `=(x^4+x^2+x+1)(x-1)` `text{Chúc bạn học tốt !}` Bình luận
`x^4-20x^2+21x-20` `=x^4-x^3+x^2+1+x^3-21x^2+21x-21` `=x^2(x^2-x+1)+(x+1)(x^2-x+1)-21(x^2-x+1)` `=(x^2-x+1)(x^2+x-20)` `4x^4+y^4` `=(2x^2)^2+4x^2y^2+y^4-4x^2y^2` `=(2x^2+y^2)^2-4x^2y^2` `=(2x^2+y^2-2xy)(2x^2+y^2+2xy)` `x^3+y^3+z^3-3xyz` `=(x^3+3x^2y+3xy^2+y^3)+z^3-3xyz-3xy(x+y)` `=(x+y)^3+z^3-3xy(x+y+z)` `=(x+y+z)(x^2+y^2+z^2-xz-yz-xy)` `x^8+x+1` `=x^8-x^2+x^2+x+1` `=x^2(x^6-1)+(x^2+x+1)` `=x^2(x-1)(x^2+x+1)(x^3+1)+(x^2+x+1)` `=(x^2+x+1)[x^2(x-1)(x^3+1)+1]` `x^5+x^4+1` `=x^5-x^2+x^4-x+x^2+x+1` `=x^2(x-1)(x^2+x+1)+x(x-1)(x^2+x+1)+(x^2+x+1)` `=(x^2+x+1)[x^2(x-1)+x(x-1)+1]` Bình luận
`a)` `x^4+4`
`=x^4+4+4x^2-4x^2`
`=(x^4+4x^2+4)-4x^2`
`=(x^2+2)^2-4x^2`
`=(x^2+2-2x)(x^2+2+2x)`
`b)` `4x^4+81`
`=4x^4+36x^2+81-36x^2`
`=(4x^4+36x^2+81)-36x^2`
`=(2x^2+9)^2-36x^2`
`=(2x^2+9+6x)(2x^2+9-6x)`
`c)` `x^7+x^2+1`
`=(x^7-x)+(x^2+x+1)`
`=x(x^6-1)+(x^2+x+1)`
`=x(x^3-1)(x^3+1)+(x^2+x+1)`
`=x(x-1)(x^2+x+1)(x^3+1)+(x^2+x+1)`
`=(x^2+x+1)[x(x-1)(x^3+1)+1]`
`=(x^2+x+1)(x^5-x^4+x^2-x+1)`
`d)` `x^7+x^5+1`
`=(x^7-x)+(x^5-x^2)+(x^2+x+1)`
`=x(x^3-1)(x^3+1)+x^2(x^3-1)+(x^2+x+1)`
`=(x^2+x+1)(x-1)(x^4+x)+x^2(x-1)(x^2+x+1)+(x^2+x+1)`
`=(x^2+x+1)[(x^5-x^4+x^2-x)+(x^3-x^2)+1]`
`=(x^2+x+1)(x^5-x^4+x^3-x+1)`
`e)` `x^5-x^4-1`
`=x^5-x^4+x^3-x^2+x^2-x+x-1`
`=x^4(x-1)+x^2(x-1)+x(x-1)+(x-1)`
`=(x^4+x^2+x+1)(x-1)`
`text{Chúc bạn học tốt !}`
`x^4-20x^2+21x-20`
`=x^4-x^3+x^2+1+x^3-21x^2+21x-21`
`=x^2(x^2-x+1)+(x+1)(x^2-x+1)-21(x^2-x+1)`
`=(x^2-x+1)(x^2+x-20)`
`4x^4+y^4`
`=(2x^2)^2+4x^2y^2+y^4-4x^2y^2`
`=(2x^2+y^2)^2-4x^2y^2`
`=(2x^2+y^2-2xy)(2x^2+y^2+2xy)`
`x^3+y^3+z^3-3xyz`
`=(x^3+3x^2y+3xy^2+y^3)+z^3-3xyz-3xy(x+y)`
`=(x+y)^3+z^3-3xy(x+y+z)`
`=(x+y+z)(x^2+y^2+z^2-xz-yz-xy)`
`x^8+x+1`
`=x^8-x^2+x^2+x+1`
`=x^2(x^6-1)+(x^2+x+1)`
`=x^2(x-1)(x^2+x+1)(x^3+1)+(x^2+x+1)`
`=(x^2+x+1)[x^2(x-1)(x^3+1)+1]`
`x^5+x^4+1`
`=x^5-x^2+x^4-x+x^2+x+1`
`=x^2(x-1)(x^2+x+1)+x(x-1)(x^2+x+1)+(x^2+x+1)`
`=(x^2+x+1)[x^2(x-1)+x(x-1)+1]`