Ký hiệu S(a) là số các chữ số của số tự nhiên a . Tìm số dương n để S(5^n) – S(2^n) là sô chẵn 18/11/2021 Bởi Rose Ký hiệu S(a) là số các chữ số của số tự nhiên a . Tìm số dương n để S(5^n) – S(2^n) là sô chẵn
S(n).S(n+1)=3.29=1.87S(n).S(n+1)=3.29=1.87 – Nếu S(n)=1⇒S(n)=1⇒ nn có dạng 100…0100…0 ⇒S(n+1)=2≠87⇒S(n+1)=2≠87 (loại) ⇒S(n).S(n+1)=3.29⇒S(n).S(n+1)=3.29 Gọi nn có dạng ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯a1a2...aka1a2…ak¯ với ai∈N;a1≠0ai∈N;a1≠0 – Nếu ak≠9⇒S(n+1)=S(n)+1⇒S(n)ak≠9⇒S(n+1)=S(n)+1⇒S(n) và S(n+1)S(n+1) luôn khác tính chẵn lẻ ⇒S(n).S(n+1)⇒S(n).S(n+1) là một số chẵn, mà 87 lẻ ⇒⇒ loại ⇒ak=9⇒ak=9 ⇒S(n)>S(n+1)⇒{S(n)=29S(n+1)=3⇒S(n)>S(n+1)⇒{S(n)=29S(n+1)=3 ⇒S(n)−S(n+1)=26⇒S(n)−S(n+1)=26 Giả sử tận cùng bằng xx số 9 ⇒n=¯¯¯¯¯¯¯¯¯¯¯¯¯¯A9…9⇒n=A9…9¯ với A có tận cùng khác 9 ⇒n+1=¯¯¯¯¯¯¯¯¯¯¯¯¯¯B0…0⇒n+1=B0…0¯ (x số 0 và B=A+1B=A+1) ⇒{S(n)=S(A)+9.xS(n+1)=S(B)=S(A+1)=S(A)+1⇒{S(n)=S(A)+9.xS(n+1)=S(B)=S(A+1)=S(A)+1 ⇒S(n)−S(n+1)=9x−1=26⇒9x=27⇒x=3⇒S(n)−S(n+1)=9x−1=26⇒9x=27⇒x=3 Vậy n=¯¯¯¯¯¯¯¯¯¯¯¯A999⇒S(n)=S(A)+27=29⇒S(A)=2n=A999¯⇒S(n)=S(A)+27=29⇒S(A)=2 Mà nn nhỏ nhất khi AA nhỏ nhất, ta có số nhỏ nhất có tổng các chữ số bằng 2 là 2 ⇒A=2⇒A=2 ⇒n=2999 mình xin hay nhất nhé chúc bạn học giỏi cho mình xin hay nhất mình đang rất cần Bình luận
S(n).S(n+1)=3.29=1.87S(n).S(n+1)=3.29=1.87
– Nếu S(n)=1⇒S(n)=1⇒ nn có dạng 100…0100…0 ⇒S(n+1)=2≠87⇒S(n+1)=2≠87 (loại)
⇒S(n).S(n+1)=3.29⇒S(n).S(n+1)=3.29
Gọi nn có dạng ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯a1a2...aka1a2…ak¯ với ai∈N;a1≠0ai∈N;a1≠0
– Nếu ak≠9⇒S(n+1)=S(n)+1⇒S(n)ak≠9⇒S(n+1)=S(n)+1⇒S(n) và S(n+1)S(n+1) luôn khác tính chẵn lẻ ⇒S(n).S(n+1)⇒S(n).S(n+1) là một số chẵn, mà 87 lẻ ⇒⇒ loại
⇒ak=9⇒ak=9 ⇒S(n)>S(n+1)⇒{S(n)=29S(n+1)=3⇒S(n)>S(n+1)⇒{S(n)=29S(n+1)=3 ⇒S(n)−S(n+1)=26⇒S(n)−S(n+1)=26
Giả sử tận cùng bằng xx số 9 ⇒n=¯¯¯¯¯¯¯¯¯¯¯¯¯¯A9…9⇒n=A9…9¯ với A có tận cùng khác 9
⇒n+1=¯¯¯¯¯¯¯¯¯¯¯¯¯¯B0…0⇒n+1=B0…0¯ (x số 0 và B=A+1B=A+1)
⇒{S(n)=S(A)+9.xS(n+1)=S(B)=S(A+1)=S(A)+1⇒{S(n)=S(A)+9.xS(n+1)=S(B)=S(A+1)=S(A)+1
⇒S(n)−S(n+1)=9x−1=26⇒9x=27⇒x=3⇒S(n)−S(n+1)=9x−1=26⇒9x=27⇒x=3
Vậy n=¯¯¯¯¯¯¯¯¯¯¯¯A999⇒S(n)=S(A)+27=29⇒S(A)=2n=A999¯⇒S(n)=S(A)+27=29⇒S(A)=2
Mà nn nhỏ nhất khi AA nhỏ nhất, ta có số nhỏ nhất có tổng các chữ số bằng 2 là 2 ⇒A=2⇒A=2
⇒n=2999
mình xin hay nhất nhé chúc bạn học giỏi cho mình xin hay nhất mình đang rất cần