$\left \{ {{x^{2}-2y+1 =2} \atop {y^{2}+2x+1 =2}} \right.$ giải hpt 06/07/2021 Bởi Ayla $\left \{ {{x^{2}-2y+1 =2} \atop {y^{2}+2x+1 =2}} \right.$ giải hpt
Đáp án: $\begin{array}{l}\left\{ \begin{array}{l}{x^2} – 2y + 1 = 2\\{y^2} + 2x + 1 = 2\end{array} \right.\\ \Rightarrow {x^2} – 2y + 1 – {y^2} – 2x – 1 = 2 – 2\\ \Rightarrow {x^2} – {y^2} – 2x – 2y = 0\\ \Rightarrow \left( {x – y} \right)\left( {x + y} \right) – 2\left( {x + y} \right) = 0\\ \Rightarrow \left( {x + y} \right)\left( {x – y – 2} \right) = 0\\ \Rightarrow \left[ \begin{array}{l}x = – y\\x = y + 2\end{array} \right.\\ + Khi:x = – y\\ \Rightarrow {x^2} + 2x + 1 = 2\\ \Rightarrow {\left( {x + 1} \right)^2} = 2\\ \Rightarrow \left[ \begin{array}{l}x = \sqrt 2 – 1 \Rightarrow y = 1 – \sqrt 2 \\x = – \sqrt 2 – 1 \Rightarrow y = \sqrt 2 + 1\end{array} \right.\\ + khi:x = y + 2\\ \Rightarrow {y^2} + 2\left( {y + 2} \right) + 1 = 2\\ \Rightarrow {y^2} + 2y + 3 = 0\\ \Rightarrow {\left( {y + 1} \right)^2} = – 2\left( {ktm} \right)\\Vay\,\left( {x;y} \right) = \left( {\sqrt 2 – 1;1 – \sqrt 2 } \right)/\left( { – \sqrt 2 – 1;\sqrt 2 + 1} \right)\end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
\left\{ \begin{array}{l}
{x^2} – 2y + 1 = 2\\
{y^2} + 2x + 1 = 2
\end{array} \right.\\
\Rightarrow {x^2} – 2y + 1 – {y^2} – 2x – 1 = 2 – 2\\
\Rightarrow {x^2} – {y^2} – 2x – 2y = 0\\
\Rightarrow \left( {x – y} \right)\left( {x + y} \right) – 2\left( {x + y} \right) = 0\\
\Rightarrow \left( {x + y} \right)\left( {x – y – 2} \right) = 0\\
\Rightarrow \left[ \begin{array}{l}
x = – y\\
x = y + 2
\end{array} \right.\\
+ Khi:x = – y\\
\Rightarrow {x^2} + 2x + 1 = 2\\
\Rightarrow {\left( {x + 1} \right)^2} = 2\\
\Rightarrow \left[ \begin{array}{l}
x = \sqrt 2 – 1 \Rightarrow y = 1 – \sqrt 2 \\
x = – \sqrt 2 – 1 \Rightarrow y = \sqrt 2 + 1
\end{array} \right.\\
+ khi:x = y + 2\\
\Rightarrow {y^2} + 2\left( {y + 2} \right) + 1 = 2\\
\Rightarrow {y^2} + 2y + 3 = 0\\
\Rightarrow {\left( {y + 1} \right)^2} = – 2\left( {ktm} \right)\\
Vay\,\left( {x;y} \right) = \left( {\sqrt 2 – 1;1 – \sqrt 2 } \right)/\left( { – \sqrt 2 – 1;\sqrt 2 + 1} \right)
\end{array}$