$\left \{ {{\frac{3}{2x-y}-\frac{6}{x+y} = -1 } \atop {\frac{1}{2x-y}-\frac{1}{x+y}= 0 }} \right.$

$\left \{ {{\frac{3}{2x-y}-\frac{6}{x+y} = -1 } \atop {\frac{1}{2x-y}-\frac{1}{x+y}= 0 }} \right.$

0 bình luận về “$\left \{ {{\frac{3}{2x-y}-\frac{6}{x+y} = -1 } \atop {\frac{1}{2x-y}-\frac{1}{x+y}= 0 }} \right.$”

  1. Đặt $ \dfrac{1}{2x-y} =a ; \dfrac{1}{x+y} = b$ ta có hệ tương đương

    $\begin{cases}\\3a-6b =-1\\\\\\a-b=0  \\\\\end{cases}$

    $\to$

    $\begin{cases}\\3a-6b =-1\\\\\\a=b  \\\\\end{cases}$

    $\to$

    $\begin{cases}\\3a-6a =-1\\\\\\a=b  \\\\\end{cases}$

    $\to$

    $\begin{cases}\\-3a =-1\\\\\\a=b  \\\\\end{cases}$

    $\to$

    $\begin{cases}\\a = \dfrac{1}{3}\\\\\\b = \dfrac{1}{3}  \\\\\end{cases}$

    $\to$

    $\begin{cases}\\ \dfrac{1}{2x-y}= \dfrac{1}{3}\\\\\\ \dfrac{1}{x+y} = \dfrac{1}{3}  \\\\\end{cases}$

    $\to$

    $\begin{cases}\\ 2x-y= 3\\\\\\ x+y = 3  \\\\\end{cases}$

    $\to$

    $\begin{cases}\\ 3x=6 \\\\\\ x+y = 3  \\\\\end{cases}$

    $\to$

    $\begin{cases}\\ x =2 \\\\\\ y = 0  \\\\\end{cases}$

    Vậy $(x;y) = (2;0)$

    Bình luận

Viết một bình luận