Let `x,y,z > 0` thõa mãn `x + y + z <= 3` . Prove that . `1/(x^{2020}y^{2022}z^{2022}) + 1/(x^{2022}y^{2020}z^{2022}) + 1/(x^{2022}y^{2022}z^{2020}) >= x/z + z/y + y/x`
Let `x,y,z > 0` thõa mãn `x + y + z <= 3` . Prove that . `1/(x^{2020}y^{2022}z^{2022}) + 1/(x^{2022}y^{2020}z^{2022}) + 1/(x^{2022}y^{2022}z^{2020}) >= x/z + z/y + y/x`
Đáp án:
Giải thích các bước giải:
Áp dụng BĐT :$ xyz ≤ (\dfrac{x + y + z}{3})^{3} ≤ (\dfrac{3}{3})^{3} = 1$
$ ⇔ (xyz)^{2022} ≤ xyz ⇔ \dfrac{1}{(xyz)^{2022}} ≥ \dfrac{1}{xyz} (1)$
Theo giả thiết $: 3 ≥ x + y + z$
$ ⇒ 3(x² + y² + z²) ≥ (x + y + z)(x² + y² + z²)$
$ = (x³ + xy²) + (y³ + yz²) + (z³ + zx²) + (x²y + y²z + z²x)$
$ ≥ 2x²y + 2y²z + 2z²x + (x²y + y²z + z²x)$
$ = 3(x²y + y²z + z²x)$
$ ⇔ x² + y² + z² ≥ x²y + y²z + z²x (2)$
$(1).(2)$ vế với vế:
$ \dfrac{x² + y² + z²}{(xyz)^{2022}} ≥ \dfrac{x²y + y²z + z²x}{xyz} $
$ ⇔ \dfrac{1}{x^{2020}y^{2022}z^{2022}} +\dfrac{1}{x^{2022}y^{2020}z^{2022}} + \dfrac{1}{x^{2022}y^{2022}z^{2020}} $
$ ≥ \dfrac{x}{z} +\dfrac{z}{y} + \dfrac{y}{x} (đpcm)$
Dấu $’=’ ⇔ x = y = z = 1$