lim (x->1) $\frac{\sqrt[m]{x} – 1}{\sqrt[n]{x} – 1 }$

lim (x->1) $\frac{\sqrt[m]{x} – 1}{\sqrt[n]{x} – 1 }$

0 bình luận về “lim (x->1) $\frac{\sqrt[m]{x} – 1}{\sqrt[n]{x} – 1 }$”

  1. Ta có

    $\underset{x \to 1}{\lim} \dfrac{\sqrt[m]{x} – 1}{\sqrt[n]{x} – 1} = \underset{x \to 1}{\lim} \dfrac{(x-1)(\sqrt[n]{x^{n-1}} + \sqrt[n]{x^{n-2}} + \cdots + \sqrt[n]{x} + 1)}{(x-1)(\sqrt[m]{x^{n-1}} + \sqrt[m]{x^{n-2}} + \cdots + \sqrt[m]{x} + 1)}$

    $= \underset{x \to 1}{\lim} \dfrac{\sqrt[n]{x^{n-1}} + \sqrt[n]{x^{n-2}} + \cdots + \sqrt[n]{x} + 1}{\sqrt[m]{x^{n-1}} + \sqrt[m]{x^{n-2}} + \cdots + \sqrt[m]{x} + 1}$

    $= \dfrac{n}{m}$

    Vậy 

    $\underset{x \to 1}{\lim} \dfrac{\sqrt[m]{x} – 1}{\sqrt[n]{x} – 1} = \dfrac{n}{m}$.

    Bình luận

Viết một bình luận