lim_{x->2} \dfrac{ \sqrt{4x+1}-3}{x^2-4}

lim_{x->2} \dfrac{ \sqrt{4x+1}-3}{x^2-4}

0 bình luận về “lim_{x->2} \dfrac{ \sqrt{4x+1}-3}{x^2-4}”

  1. Đáp án:

     

    Giải thích các bước giải:

     $\lim _{x\to 2}\left(\dfrac{\:\sqrt{4x+1}-3}{x^2-4}\right)$

    $=\lim _{x\to \:2}\left(\dfrac{\dfrac{4x-8}{\sqrt{4x+1}+3}}{x^2-4}\right)$

    $=\lim _{x\to \:2}\left(\dfrac{\dfrac{4x-8}{\sqrt{4x+1}+3}}{x^2-4}\right)$

    $=\dfrac{4}{\left(\sqrt{4\cdot \:2+1}+3\right)\left(2+2\right)}$

    `=1/6`

    Bình luận
  2. $\lim\limits_{x\to 2}\dfrac{ \sqrt{4x+1}-3}{x^2-4}$

    $=\lim\limits_{x\to 2}\dfrac{4x+1-3^2}{(x^2-4)(\sqrt{4x+1}+3)}$

    $=\lim\limits_{x\to 2}\dfrac{4(x-2)}{(x-2)(x+2)(\sqrt{4x+1}+3)}$

    $=\lim\limits_{x\to 2}\dfrac{4}{(x+2)(\sqrt{4x+1}+3)}$

    $=\dfrac{4}{(2+2).(\sqrt{4.2+1}+3)}$

    $=\dfrac{1}{6}$

    Bình luận

Viết một bình luận