lim(can(4n^2-2n) -2n) lim1/(can n^2+2)-(can n^2 +4)

lim(can(4n^2-2n) -2n)
lim1/(can n^2+2)-(can n^2 +4)

0 bình luận về “lim(can(4n^2-2n) -2n) lim1/(can n^2+2)-(can n^2 +4)”

  1. 1) $\lim(\sqrt{4n^2 – 2n} – 2n)$

    $=\lim\dfrac{(\sqrt{4n^2 – 2n} – 2n)(\sqrt{4n^2 – 2n} +2n)}{\sqrt{4n^2 – 2n} +2n}$

    $=\lim\dfrac{-2n}{\sqrt{4n^2 – 2n} + 2n}$

    $=\lim\dfrac{-2}{\sqrt{4 -\dfrac2n} +2}$

    $=\dfrac{-2}{\sqrt{4-2.0} +2}$

    $=-\dfrac12$

    2) $\lim\dfrac{1}{\sqrt{n^2 +2} -\sqrt{n^2 +4}}$

    $=\lim\dfrac{\sqrt{n^2 +2} +\sqrt{n^2 +4}}{(\sqrt{n^2 +2} -\sqrt{n^2 +4})(\sqrt{n^2 +2} +\sqrt{n^2 +4})}$

    $=-\dfrac12\lim(\sqrt{n^2 +2} +\sqrt{n^2 +4})$

    $=-\dfrac12\lim\left[n\left(\sqrt{1+\dfrac{2}{n^2}} + \sqrt{1+\dfrac{4}{n^2}}\right)\right]$

    $=-\dfrac12\cdot+\infty(\sqrt{1+2.0} + \sqrt{1 + 4.0})$

    $= -\infty$

    Bình luận

Viết một bình luận