lim = x → $\frac{1}{2}$ $\frac{8x^2 – 1}{6x^2 – 5x +1}$

lim =
x → $\frac{1}{2}$ $\frac{8x^2 – 1}{6x^2 – 5x +1}$

0 bình luận về “lim = x → $\frac{1}{2}$ $\frac{8x^2 – 1}{6x^2 – 5x +1}$”

  1. Đáp án:

     $=+\infty$

    Giải thích các bước giải:

    $\lim\limits_{x\to \dfrac{1}{2}} \dfrac{8x^2-1}{6x^2-5x+1}\\=\lim\limits_{x\to \dfrac{1}{2}} \dfrac{x^2(8-\dfrac{1}{x^2})}{x^2(6-\dfrac{5}{x}+\dfrac{1}{x^2})}\\=\lim\limits_{x\to \dfrac{1}{2}} \dfrac{(8-\dfrac{1}{x^2})}{(6-\dfrac{5}{x}+\dfrac{1}{x^2})}\\=\lim\limits_{x\to \dfrac{1}{2}} \dfrac{(8-\dfrac{1}{(\dfrac{1}{2})^2})}{(6-\dfrac{5}{\dfrac{1}{2}}+\dfrac{1}{(\dfrac{1}{2})^2})}\\=\dfrac{4}{0}=+\infty$

    Bình luận

Viết một bình luận