lim( $\frac{1}{n^{2}}$+ $\frac{2}{n^{2}}$ +…+ $\frac{n-1}{n^2}$ )

lim( $\frac{1}{n^{2}}$+ $\frac{2}{n^{2}}$ +…+ $\frac{n-1}{n^2}$ )

0 bình luận về “lim( $\frac{1}{n^{2}}$+ $\frac{2}{n^{2}}$ +…+ $\frac{n-1}{n^2}$ )”

  1. `lim(\frac{1}{n²} + \frac{2}{n²} + …+ \frac{n-1}{n²})`

    Ta có:

    `\frac{1}{n²} + \frac{2}{n²} + …+ \frac{n-1}{n²}`

    `= \ frac{1}{n²} (1+2+…+n-1)`

    `=\frac{1}{n²}. \frac{(n-1)(1+n-1)}{2}`

    `= \frac{(n-1)n}{2n²}`

    `= \frac{n²-n}{2n²}`

    `=> lim(\frac{1}{n²} + \frac{2}{n²} + …+ \frac{n-1}{n²})`

    `=lim \frac{n²-n}{2n²}`  

    `=lim \frac{1-\frac{1}{n}}{2}`

    `= \frac{1-0}{2}`

    `=\frac{1}{2}`

    Bình luận

Viết một bình luận