$\lim_{} \frac{-3n^{2}+4n+1}{n^{2}. 2^{n} }$

$\lim_{} \frac{-3n^{2}+4n+1}{n^{2}. 2^{n} }$

0 bình luận về “$\lim_{} \frac{-3n^{2}+4n+1}{n^{2}. 2^{n} }$”

  1. $I=\lim\dfrac{-3n^2+4n+1}{n^2.2^n}$

    $=\lim\dfrac{-3+\dfrac{4}{n}+\dfrac{1}{n^2}}{2^n}$

    $\lim\Big(-3+\dfrac{4}{n}+\dfrac{1}{n^2}\Big)=-3$

    $\lim 2^n=+\infty$

    $\to I=0$

    Bình luận
  2. `lim (-3n^2 + 4n + 1)/(n^{2}.2^{n})`

    $= lim \dfrac{-3 + \dfrac{4}{n} + \dfrac{1}{n^2}}{1.2^{n}}$

    $= \dfrac{lim (-3 + \dfrac{4}{n} + \dfrac{1}{n^2})}{lim 2^{n}}$

    `= -3/(+\infty)`

    `= 0`

    Bình luận

Viết một bình luận