lim( √n^2+2n)-n-1 lim( √4n^2+n)-n lim( √n^2-n)-n lim1/( √n^2+2) – ( √n^2+4) 14/07/2021 Bởi Arya lim( √n^2+2n)-n-1 lim( √4n^2+n)-n lim( √n^2-n)-n lim1/( √n^2+2) – ( √n^2+4)
Đáp án: Giải thích các bước giải: lim(√n2+2n−n−1)=limn2+2n−(n+1)2√n2+2n+n+1=lim−1√n2+2n+n+1=lim−1n√1+2n+1+1n=0lim(√4n2+n−n)=lim4n2+n−n2√4n2+n+n=lim3+1n√4n2+1n4+1n=+∞lim(√n2−n−n)=limn2−n−n2√n2−n+n=lim−1√1−1n+1=−1lim(n2+2n−n−1)=limn2+2n−(n+1)2n2+2n+n+1=lim−1n2+2n+n+1=lim−1n1+2n+1+1n=0lim(4n2+n−n)=lim4n2+n−n24n2+n+n=lim3+1n4n2+1n4+1n=+∞lim(n2−n−n)=limn2−n−n2n2−n+n=lim−11−1n+1=−1 Bình luận
Đáp án: $\begin{array}{l}\lim \left( {\sqrt {{n^2} + 2n} – n – 1} \right)\\ = \lim \frac{{{n^2} + 2n – {{\left( {n + 1} \right)}^2}}}{{\sqrt {{n^2} + 2n} + n + 1}}\\ = \lim \frac{{ – 1}}{{\sqrt {{n^2} + 2n} + n + 1}}\\ = \lim \frac{{ – \frac{1}{n}}}{{\sqrt {1 + \frac{2}{n}} + 1 + \frac{1}{n}}} = 0\\\lim \left( {\sqrt {4{n^2} + n} – n} \right)\\ = \lim \frac{{4{n^2} + n – {n^2}}}{{\sqrt {4{n^2} + n} + n}}\\ = \lim \frac{{3 + \frac{1}{n}}}{{\sqrt {\frac{4}{{{n^2}}} + \frac{1}{{{n^4}}}} + \frac{1}{n}}} = + \infty \\\lim \left( {\sqrt {{n^2} – n} – n} \right)\\ = \lim \frac{{{n^2} – n – {n^2}}}{{\sqrt {{n^2} – n} + n}}\\ = \lim \frac{{ – 1}}{{\sqrt {1 – \frac{1}{n}} + 1}} = – 1\end{array}$ Bình luận
Đáp án:
Giải thích các bước giải:
lim(√n2+2n−n−1)=limn2+2n−(n+1)2√n2+2n+n+1=lim−1√n2+2n+n+1=lim−1n√1+2n+1+1n=0lim(√4n2+n−n)=lim4n2+n−n2√4n2+n+n=lim3+1n√4n2+1n4+1n=+∞lim(√n2−n−n)=limn2−n−n2√n2−n+n=lim−1√1−1n+1=−1lim(n2+2n−n−1)=limn2+2n−(n+1)2n2+2n+n+1=lim−1n2+2n+n+1=lim−1n1+2n+1+1n=0lim(4n2+n−n)=lim4n2+n−n24n2+n+n=lim3+1n4n2+1n4+1n=+∞lim(n2−n−n)=limn2−n−n2n2−n+n=lim−11−1n+1=−1
Đáp án:
$\begin{array}{l}
\lim \left( {\sqrt {{n^2} + 2n} – n – 1} \right)\\
= \lim \frac{{{n^2} + 2n – {{\left( {n + 1} \right)}^2}}}{{\sqrt {{n^2} + 2n} + n + 1}}\\
= \lim \frac{{ – 1}}{{\sqrt {{n^2} + 2n} + n + 1}}\\
= \lim \frac{{ – \frac{1}{n}}}{{\sqrt {1 + \frac{2}{n}} + 1 + \frac{1}{n}}} = 0\\
\lim \left( {\sqrt {4{n^2} + n} – n} \right)\\
= \lim \frac{{4{n^2} + n – {n^2}}}{{\sqrt {4{n^2} + n} + n}}\\
= \lim \frac{{3 + \frac{1}{n}}}{{\sqrt {\frac{4}{{{n^2}}} + \frac{1}{{{n^4}}}} + \frac{1}{n}}} = + \infty \\
\lim \left( {\sqrt {{n^2} – n} – n} \right)\\
= \lim \frac{{{n^2} – n – {n^2}}}{{\sqrt {{n^2} – n} + n}}\\
= \lim \frac{{ – 1}}{{\sqrt {1 – \frac{1}{n}} + 1}} = – 1
\end{array}$