$\lim_{n \to \frac{\pi}{3}} \frac{tan^3x-3tanx}{cos(x+\frac{\pi}{6})}$

$\lim_{n \to \frac{\pi}{3}} \frac{tan^3x-3tanx}{cos(x+\frac{\pi}{6})}$

0 bình luận về “$\lim_{n \to \frac{\pi}{3}} \frac{tan^3x-3tanx}{cos(x+\frac{\pi}{6})}$”

  1. Đáp án:

    \(\lim\limits_{x\to \tfrac{\pi}{3}}\dfrac{\tan^3x – 3\tan x}{\cos\left(x + \dfrac{\pi}{6}\right)}=-24\) 

    Giải thích các bước giải:

    \(\begin{array}{l}
    \quad \lim\limits_{x\to \tfrac{\pi}{3}}\dfrac{\tan^3x – 3\tan x}{\cos\left(x + \dfrac{\pi}{6}\right)}\\
    = \lim\limits_{x\to \tfrac{\pi}{3}}\dfrac{\sin^3x – 3\cos^2x.\sin x}{\cos^3x\cos\left(x + \dfrac{\pi}{6}\right)}\\
    = \lim\limits_{x\to \tfrac{\pi}{3}}\dfrac{1}{\cos^3x}\cdot \lim\limits_{x\to \tfrac{\pi}{3}}\dfrac{\sin^3x – 3\cos^2x.\sin x}{\cos\left(x + \dfrac{\pi}{6}\right)}\\
    = \dfrac{1}{\cos^3\dfrac{\pi}{3}}\cdot \lim\limits_{x\to \tfrac{\pi}{3}}\dfrac{3\cos^3x – 9\cos x.\sin^2x}{\sin\left(x + \dfrac{\pi}{6}\right)}\qquad (l’Hôpital)\\
    = 8\cdot \dfrac{3\cos^3\dfrac{\pi}{3} – 9\cos\dfrac{\pi}{3}.\sin^2\dfrac{\pi}{3}}{\sin\left(\dfrac{\pi}{3} + \dfrac{\pi}{6}\right)}\\
    = 8\cdot (-3)\\
    = -24
    \end{array}\) 

    Bình luận

Viết một bình luận