lim_n –>vô cực (n^2/n^3+1+n^2/n^3+2+…+n^2/n^3+n)

lim_n –>vô cực (n^2/n^3+1+n^2/n^3+2+…+n^2/n^3+n)

0 bình luận về “lim_n –>vô cực (n^2/n^3+1+n^2/n^3+2+…+n^2/n^3+n)”

  1. Đáp án:

    \[0\]

    Giải thích các bước giải:

     Ta có:

    \[\begin{array}{l}
    A = \mathop {\lim }\limits_{n \to  + \infty } \left( {\frac{{{n^2}}}{{{n^3} + 1}} + \frac{{{n^2}}}{{{n^3} + 2}} + \frac{{{n^2}}}{{{n^3} + 3}} + ….. + \frac{{{n^2}}}{{{n^3} + n}}} \right)\\
     = \mathop {\lim }\limits_{n \to  + \infty } \left( {\frac{1}{{n + \frac{1}{{{n^2}}}}} + \frac{1}{{n + \frac{2}{{{n^2}}}}} + \frac{1}{{n + \frac{3}{{{n^2}}}}} + ….. + \frac{1}{{n + \frac{1}{n}}}} \right)\\
    \mathop {\lim }\limits_{n \to  + \infty } \left( {n + \frac{1}{{{n^2}}}} \right) = \mathop {\lim }\limits_{n \to  + \infty } \left( {n + \frac{2}{{{n^2}}}} \right) = ….. = \mathop {\lim }\limits_{n \to  + \infty } \left( {n + \frac{1}{n}} \right) =  + \infty \\
     \Rightarrow \mathop {\lim }\limits_{n \to  + \infty } \left( {\frac{1}{{1 + \frac{1}{{{n^2}}}}}} \right) = \mathop {\lim }\limits_{n \to  + \infty } \left( {\frac{1}{{1 + \frac{2}{{{n^2}}}}}} \right) = …. = \mathop {\lim }\limits_{n \to  + \infty } \left( {\frac{1}{{n + \frac{1}{n}}}} \right) = 0\\
     \Rightarrow A = 0
    \end{array}\]

    Bình luận

Viết một bình luận