lim x tiến tới âm vô cực căn(4x^2-8x+10)+2x 05/12/2021 Bởi Cora lim x tiến tới âm vô cực căn(4x^2-8x+10)+2x
Ta có $\underset{x \to -\infty}{\lim} (\sqrt{4x^2 – 8x + 10} + 2x) = \underset{x \to -\infty}{\lim} \dfrac{4x^2 -8x + 10 – 4x^2}{\sqrt{4x^2 – 8x + 10} – 2x}$ $= \underset{x \to -\infty}{\lim} \dfrac{10 – 8x}{\sqrt{4x^2 – 8x + 10} – 2x}$ $= \underset{x \to +\infty}{\lim}\dfrac{-\frac{10}{x} + 8}{\sqrt{4 – \frac{8}{x} + \frac{10}{x^2}} + 2}$ $= \dfrac{8}{2 + 2} = 2$ Vậy $\underset{x \to -\infty}{\lim} (\sqrt{4x^2 – 8x + 10} + 2x) = 2$. Bình luận
Lời giải: $\lim\limits_{x \to -\infty} (\sqrt[]{4x^2-8x+10}+2x)$ $=\lim\limits_{x \to -\infty} \dfrac{(\sqrt[]{4x^2-8x+10}+2x)(\sqrt[]{4x^2-8x+10}-2x)}{\sqrt[]{4x^2-8x+10}-2x}$ $=\lim\limits_{x \to -\infty} \dfrac{(4x^2-8x+10)-(2x)^2}{\sqrt[]{4x^2-8x+10}-2x}$ $=\lim\limits_{x \to -\infty} \dfrac{-8x+10}{\sqrt[]{4x^2-8x+10}-2x}$ $=\lim\limits_{x \to -\infty} \dfrac{-8+\dfrac{10}{x}}{-\sqrt[]{4-\dfrac{8}{x}+\dfrac{10}{x^2}}-2}$ $=\dfrac{-8}{-4}=2$ Giải thích: Do $\sqrt{A^2}=|A|>0$ $(\forall A)$ $\to$ khi $x\to-\infty$ thì $x=-\sqrt{x^2}$ Bình luận
Ta có
$\underset{x \to -\infty}{\lim} (\sqrt{4x^2 – 8x + 10} + 2x) = \underset{x \to -\infty}{\lim} \dfrac{4x^2 -8x + 10 – 4x^2}{\sqrt{4x^2 – 8x + 10} – 2x}$
$= \underset{x \to -\infty}{\lim} \dfrac{10 – 8x}{\sqrt{4x^2 – 8x + 10} – 2x}$
$= \underset{x \to +\infty}{\lim}\dfrac{-\frac{10}{x} + 8}{\sqrt{4 – \frac{8}{x} + \frac{10}{x^2}} + 2}$
$= \dfrac{8}{2 + 2} = 2$
Vậy
$\underset{x \to -\infty}{\lim} (\sqrt{4x^2 – 8x + 10} + 2x) = 2$.
Lời giải:
$\lim\limits_{x \to -\infty} (\sqrt[]{4x^2-8x+10}+2x)$
$=\lim\limits_{x \to -\infty} \dfrac{(\sqrt[]{4x^2-8x+10}+2x)(\sqrt[]{4x^2-8x+10}-2x)}{\sqrt[]{4x^2-8x+10}-2x}$
$=\lim\limits_{x \to -\infty} \dfrac{(4x^2-8x+10)-(2x)^2}{\sqrt[]{4x^2-8x+10}-2x}$
$=\lim\limits_{x \to -\infty} \dfrac{-8x+10}{\sqrt[]{4x^2-8x+10}-2x}$
$=\lim\limits_{x \to -\infty} \dfrac{-8+\dfrac{10}{x}}{-\sqrt[]{4-\dfrac{8}{x}+\dfrac{10}{x^2}}-2}$
$=\dfrac{-8}{-4}=2$
Giải thích:
Do $\sqrt{A^2}=|A|>0$ $(\forall A)$
$\to$ khi $x\to-\infty$ thì $x=-\sqrt{x^2}$