$\lim_{x \to 6} \dfrac{\sqrt{x+3}-3}{x-6}$

$\lim_{x \to 6} \dfrac{\sqrt{x+3}-3}{x-6}$

0 bình luận về “$\lim_{x \to 6} \dfrac{\sqrt{x+3}-3}{x-6}$”

  1. Đáp án:

    $\mathop {\lim }\limits_{x \to  6 } \dfrac{\sqrt{x+3}-3}{x-6} = \dfrac{1}{6}$

    Giải thích các bước giải:

    $\mathop {\lim }\limits_{x \to  6 } \dfrac{\sqrt{x+3}-3}{x-6}$

    $\mathop {\lim }\limits_{x \to  6 } \dfrac{(\sqrt{x+3}-3)(\sqrt{x+3}+3)}{(x-6)(\sqrt{x+3}+3)}$

    $\mathop {\lim }\limits_{x \to  6 } \dfrac{x+3-9}{(x-6)(\sqrt{x+3}+3)}$

    $\mathop {\lim }\limits_{x \to  6 } \dfrac{x-6}{(x-6)(\sqrt{x+3}+3)}$

    $\mathop {\lim }\limits_{x \to  6 } \dfrac{1}{\sqrt{x+3}+3}$

    $\mathop {\lim }\limits_{x \to  6 } \dfrac{1}{3+3}$

    $\mathop {\lim }\limits_{x \to  6 } = \dfrac{1}{6}$

    Bình luận

Viết một bình luận