M=( 3+x/x-3 + 18/9-x^2 + x-3/x+3 ) : ( 1 – x+1/x+3 ) 03/10/2021 Bởi Lydia M=( 3+x/x-3 + 18/9-x^2 + x-3/x+3 ) : ( 1 – x+1/x+3 )
Đáp án: `M=((x+3)/(x-3)+18/(9-x^2)+(x-3)/(x+3)):(1-(x+1)/(x+3))` `=>M=(((x+3)^2-18+(x-3)^2)/(x^2-9)):((x^2-9-(x+1)(x-3))/(x^2-9))` `=>M=(2x^2)/(x^2-9) . (x^2-9)/(2x-6)` `=>M=(2x^2)/(2(x-3))=(x^2)/(x-3)` Bình luận
`#Kenshiro` `⇒ M = ( (3+x)/(x-3) – 18/(9-x^2) + (x-3)/(x+3) ) : ( 1 – (x+1)/(x+3) )` `⇒ M = ( ((x+3)^2)/(x^2-9) – 18/(9-x^2) + ((x-3)^2)/(x^2-9) ) : 2/(x+3)` `⇒ M = ((x^2+6x+9-18+x^2-6x+9)/(x^2-9) ) xx ((x^2-9)/(2.(x-3)))` `⇒ M = (2x^2)/(x^2-9) xx (x^2-9)/(2.(x-3))` `⇒ M = (x^2)/(x-3)` Bình luận
Đáp án:
`M=((x+3)/(x-3)+18/(9-x^2)+(x-3)/(x+3)):(1-(x+1)/(x+3))`
`=>M=(((x+3)^2-18+(x-3)^2)/(x^2-9)):((x^2-9-(x+1)(x-3))/(x^2-9))`
`=>M=(2x^2)/(x^2-9) . (x^2-9)/(2x-6)`
`=>M=(2x^2)/(2(x-3))=(x^2)/(x-3)`
`#Kenshiro`
`⇒ M = ( (3+x)/(x-3) – 18/(9-x^2) + (x-3)/(x+3) ) : ( 1 – (x+1)/(x+3) )`
`⇒ M = ( ((x+3)^2)/(x^2-9) – 18/(9-x^2) + ((x-3)^2)/(x^2-9) ) : 2/(x+3)`
`⇒ M = ((x^2+6x+9-18+x^2-6x+9)/(x^2-9) ) xx ((x^2-9)/(2.(x-3)))`
`⇒ M = (2x^2)/(x^2-9) xx (x^2-9)/(2.(x-3))`
`⇒ M = (x^2)/(x-3)`