mn giúp mk vs Cho x=$\sqrt[3]{3+2\sqrt{2}}$ +$\sqrt[3]{3-2\sqrt{2}}$ y=$\sqrt[3]{17+12\sqrt{2}}$ +$\sqrt[3]{17-12\sqrt{2}}$ Tính A=$(x-y)^{2}$

mn giúp mk vs
Cho x=$\sqrt[3]{3+2\sqrt{2}}$ +$\sqrt[3]{3-2\sqrt{2}}$
y=$\sqrt[3]{17+12\sqrt{2}}$ +$\sqrt[3]{17-12\sqrt{2}}$
Tính A=$(x-y)^{2}$ +3(x-y)(xy+1)

0 bình luận về “mn giúp mk vs Cho x=$\sqrt[3]{3+2\sqrt{2}}$ +$\sqrt[3]{3-2\sqrt{2}}$ y=$\sqrt[3]{17+12\sqrt{2}}$ +$\sqrt[3]{17-12\sqrt{2}}$ Tính A=$(x-y)^{2}$”

  1. Đáp án: (Mình đổi đề: $(x-y)^2⇒(x-y)^3;xy+1⇒xy-1$ nhé)

    $A=-28$ 

    Giải thích các bước giải:

    Ta có:

    $x=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}$

    $⇒x^3=(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}})^3$

    $=3+2\sqrt{2}+3-2\sqrt{2}+3.\sqrt[3]{3+2\sqrt{2}}.\sqrt[3]{3-2\sqrt{2}}.(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}})$

    $=6+3x.\sqrt[3]{(3+2\sqrt{2})(3-2\sqrt{2})}$

    $=6+3x.\sqrt[3]{9-8}$

    $=6+3x.\sqrt[3]{1}=6+3x$

    $⇒x^3-3x=6$

    $y=\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17-12\sqrt{2}}$

    $⇒y^3=(\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17-12\sqrt{2}})^3$

    $=17+12\sqrt{2}+17-12\sqrt{2}+3.\sqrt[3]{17+12\sqrt{2}}.\sqrt[3]{17-12\sqrt{2}}.(\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17-12\sqrt{2}})$

    $=34+3y.\sqrt[3]{(17+12\sqrt{2})(17-12\sqrt{2})}$

    $=34+3y.\sqrt[3]{289-288}$

    $=34+3y.\sqrt[3]{1}=34+3y$

    $⇒y^3-3y=34$

    Lại có:

    $A=(x-y)^3+3(x-y)(xy-1)$

    $=(x^3-3x^2y+3xy^2-y^3)+(3x^2y-3x-3xy^2+3y)$

    $=x^3-3x^2y+3xy^2-y^3+3x^2y-3x-3xy^2+3y$

    $=x^3-3x-y^3+3y$

    $=(x^3-3x)-(y^3-3y)$

    $=6-34=-28$

    Bình luận

Viết một bình luận