Mn ơi giúp e câu này vs ạ Với giá trị a bao nhiêu thì x^2+(2-a)x-1+a>0 ¥x<1 Mn giải chi tiết giúp e vs ạ.Em cảm ơn. 02/09/2021 Bởi Maya Mn ơi giúp e câu này vs ạ Với giá trị a bao nhiêu thì x^2+(2-a)x-1+a>0 ¥x<1 Mn giải chi tiết giúp e vs ạ.Em cảm ơn.
Đáp án: $\begin{array}{l}y = {x^2} + \left( {2 – a} \right).x – 1 + a > 0\forall x < 1\\ \Rightarrow {x^2} + 2x – 1 + \left( {1 – x} \right).a > 0\forall x < 1\\ \Rightarrow {x^2} + 2x – 1 > \left( {x – 1} \right).a\forall x < 1\\ \Rightarrow \dfrac{{{x^2} + 2x – 1}}{{x – 1}} < a\left( {do:x < 1} \right)\\Dat:g\left( x \right) = \dfrac{{{x^2} + 2x – 1}}{{x – 1}}\\ \Rightarrow g\left( x \right) < a\forall x < 1\\ \Rightarrow \mathop {max}\limits_{\left( { – \infty ;1} \right)} g\left( x \right) < a\\g’\left( x \right) = \dfrac{{\left( {2x + 2} \right).\left( {x – 1} \right) – {x^2} – 2x + 1}}{{{{\left( {x – 1} \right)}^2}}}\\ = \dfrac{{2{x^2} – 2 – {x^2} – 2x + 1}}{{{{\left( {x – 1} \right)}^2}}}\\ = \dfrac{{{x^2} – 2x – 1}}{{{{\left( {x – 1} \right)}^2}}} = 0\\ \Rightarrow {x^2} – 2x – 1 = 0\\ \Rightarrow \left[ \begin{array}{l}x = 1 + \sqrt 2 \\x = 1 – \sqrt 2 \end{array} \right.\\ \Rightarrow \mathop {max}\limits_{\left( { – \infty ;1} \right)} g\left( x \right) = g\left( {1 – \sqrt 2 } \right) = 4 – 2\sqrt 2 \\ \Rightarrow a > 4 – 2\sqrt 2 \end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
y = {x^2} + \left( {2 – a} \right).x – 1 + a > 0\forall x < 1\\
\Rightarrow {x^2} + 2x – 1 + \left( {1 – x} \right).a > 0\forall x < 1\\
\Rightarrow {x^2} + 2x – 1 > \left( {x – 1} \right).a\forall x < 1\\
\Rightarrow \dfrac{{{x^2} + 2x – 1}}{{x – 1}} < a\left( {do:x < 1} \right)\\
Dat:g\left( x \right) = \dfrac{{{x^2} + 2x – 1}}{{x – 1}}\\
\Rightarrow g\left( x \right) < a\forall x < 1\\
\Rightarrow \mathop {max}\limits_{\left( { – \infty ;1} \right)} g\left( x \right) < a\\
g’\left( x \right) = \dfrac{{\left( {2x + 2} \right).\left( {x – 1} \right) – {x^2} – 2x + 1}}{{{{\left( {x – 1} \right)}^2}}}\\
= \dfrac{{2{x^2} – 2 – {x^2} – 2x + 1}}{{{{\left( {x – 1} \right)}^2}}}\\
= \dfrac{{{x^2} – 2x – 1}}{{{{\left( {x – 1} \right)}^2}}} = 0\\
\Rightarrow {x^2} – 2x – 1 = 0\\
\Rightarrow \left[ \begin{array}{l}
x = 1 + \sqrt 2 \\
x = 1 – \sqrt 2
\end{array} \right.\\
\Rightarrow \mathop {max}\limits_{\left( { – \infty ;1} \right)} g\left( x \right) = g\left( {1 – \sqrt 2 } \right) = 4 – 2\sqrt 2 \\
\Rightarrow a > 4 – 2\sqrt 2
\end{array}$