mng có thể giải giúp em vs 1) cos(x+pi/3)*(sin2x-1)=0 2) sinx+ căn 3 *sin x/2 =0 3) sin2x= cos( pi/6-x) 4) cos( x-9pi/4)= sin( 3x+2pi/3)

mng có thể giải giúp em vs
1) cos(x+pi/3)*(sin2x-1)=0
2) sinx+ căn 3 *sin x/2 =0
3) sin2x= cos( pi/6-x)
4) cos( x-9pi/4)= sin( 3x+2pi/3)

0 bình luận về “mng có thể giải giúp em vs 1) cos(x+pi/3)*(sin2x-1)=0 2) sinx+ căn 3 *sin x/2 =0 3) sin2x= cos( pi/6-x) 4) cos( x-9pi/4)= sin( 3x+2pi/3)”

  1. Đáp án:

     Phương trình có các họ nghiệm là:

    a) ${x = \dfrac{\pi }{6} + k\pi \left( {k \in Z} \right);x = \dfrac{1}{2} + k\dfrac{\pi }{2}\left( {k \in Z} \right)}$

    b) ${x = k2\pi \left( {k \in Z} \right);x =  \pm \dfrac{{5\pi }}{3} + k4\pi \left( {k \in Z} \right)}$

    c) ${x = \dfrac{\pi }{3} + k2\pi \left( {k \in Z} \right);x = \dfrac{{2\pi }}{9} + k2\pi \left( {k \in Z} \right)}$

    d) ${x =  – \dfrac{{29\pi }}{{24}} + k\pi \left( {k \in Z} \right);x = \dfrac{{25\pi }}{{48}} + k\dfrac{\pi }{2}\left( {k \in Z} \right)}$

    Giải thích các bước giải:

    $\begin{array}{l}
    a)\cos \left( {x + \dfrac{\pi }{3}} \right)\sin \left( {2x – 1} \right) = 0\\
     \Leftrightarrow \left[ \begin{array}{l}
    \cos \left( {x + \dfrac{\pi }{3}} \right) = 0\\
    \sin \left( {2x – 1} \right) = 0
    \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
    x + \dfrac{\pi }{3} = \dfrac{\pi }{2} + k\pi \\
    2x – 1 = k\pi 
    \end{array} \right.\left( {k \in Z} \right) \Leftrightarrow \left[ \begin{array}{l}
    x = \dfrac{\pi }{6} + k\pi \left( {k \in Z} \right)\\
    x = \dfrac{1}{2} + k\dfrac{\pi }{2}\left( {k \in Z} \right)
    \end{array} \right.\\
    b)\sin x + \sqrt 3 \sin \dfrac{x}{2} = 0\\
     \Leftrightarrow 2\sin \dfrac{x}{2}.\cos \dfrac{x}{2} + \sqrt 3 \sin \dfrac{x}{2} = 0\\
     \Leftrightarrow \sin \dfrac{x}{2}\left( {2\cos \dfrac{x}{2} + \sqrt 3 } \right) = 0\\
     \Leftrightarrow \left[ \begin{array}{l}
    \sin \dfrac{x}{2} = 0\\
    \cos \dfrac{x}{2} = \dfrac{{ – \sqrt 3 }}{2}
    \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
    \dfrac{x}{2} = k\pi \\
    \dfrac{x}{2} =  \pm \dfrac{{5\pi }}{6} + k2\pi 
    \end{array} \right.\left( {k \in Z} \right)\\
     \Leftrightarrow \left[ \begin{array}{l}
    x = k2\pi \left( {k \in Z} \right)\\
    x =  \pm \dfrac{{5\pi }}{3} + k4\pi \left( {k \in Z} \right)
    \end{array} \right.\\
    c)\sin 2x = \cos \left( {\dfrac{\pi }{6} – x} \right)\\
     \Leftrightarrow \cos \left( {\dfrac{\pi }{2} – 2x} \right) = \cos \left( {\dfrac{\pi }{6} – x} \right)\\
     \Leftrightarrow \left[ \begin{array}{l}
    \dfrac{\pi }{2} – 2x = \dfrac{\pi }{6} – x + k2\pi \\
    \dfrac{\pi }{2} – 2x =  – \dfrac{\pi }{6} + x + k2\pi 
    \end{array} \right.\left( {k \in Z} \right)\\
     \Leftrightarrow \left[ \begin{array}{l}
    x = \dfrac{\pi }{3} + k2\pi \left( {k \in Z} \right)\\
    x = \dfrac{{2\pi }}{9} + k2\pi \left( {k \in Z} \right)
    \end{array} \right.\\
    d)\cos \left( {x – \dfrac{{9\pi }}{4}} \right) = \sin \left( {3x + \dfrac{{2\pi }}{3}} \right)\\
     \Leftrightarrow \cos \left( {x – \dfrac{{9\pi }}{4}} \right) = \cos \left( {3x + \dfrac{\pi }{6}} \right)\\
     \Leftrightarrow \left[ \begin{array}{l}
    x – \dfrac{{9\pi }}{4} = 3x + \dfrac{\pi }{6} + k2\pi \\
    x – \dfrac{{9\pi }}{4} =  – 3x – \dfrac{\pi }{6} + k2\pi 
    \end{array} \right.\left( {k \in Z} \right)\\
     \Leftrightarrow \left[ \begin{array}{l}
    x =  – \dfrac{{29\pi }}{{24}} + k\pi \left( {k \in Z} \right)\\
    x = \dfrac{{25\pi }}{{48}} + k\dfrac{\pi }{2}\left( {k \in Z} \right)
    \end{array} \right.
    \end{array}$

    Bình luận

Viết một bình luận