Một tập thể gồm 14 người gồm 6 nam và 8 nữ trong đó có An và Bình người ta muốn chọn một tổ công tác gồm 6 người. Tìm số cách chọn tổ sao cho có 1 tổ

Một tập thể gồm 14 người gồm 6 nam và 8 nữ trong đó có An và Bình người ta muốn chọn một tổ công tác gồm 6 người. Tìm số cách chọn tổ sao cho có 1 tổ trưởng 5 tổ viên trong đó An và Bình không đồng thời có mặt

0 bình luận về “Một tập thể gồm 14 người gồm 6 nam và 8 nữ trong đó có An và Bình người ta muốn chọn một tổ công tác gồm 6 người. Tìm số cách chọn tổ sao cho có 1 tổ”

  1. Đáp án: Có $=15048$ cách chọn

     

    Giải thích các bước giải:

    Th1: An và Bình không có mặt trong tổ công tác:

    Chọn 6 bạn trong 12 bạn ( 14 người loại An và Bình)

    $\Rightarrow $ có $C_{12}^6$ cách

     

    Th2: An có trong tổ công tác, Bình không có trong tổ công tác:

    Chọn An có 1 cách

    Chọn 5 bạn trong 12 người còn lại

    $\Rightarrow $ có $C_{12}^5$ cách

     

    Th3: Bình có trong tổ công tác, An không có trong tổ công tác có $C_{12}^5$ cách

     

    Trong 1 tổ 6 người có $6$ cách chọn ra 1 tổ trưởng

     

    Như vậy có tất cả số cách là: $(C_{12}^6+C_{12}^5+C_{12}^5).6=15048$ cách.

    Bình luận
  2. Đáp án:

    Giải thích các bước giải:

    th1: cả an và bình đều không được chọn

    có 12C6 cách chọn ra 6 người trong tổ công tác đó

    th2: chỉ có an trong tổ công tác

    có 12C5 cách chọn ra 5 người còn lại trong tổ công tác

    th3: chỉ có bình trong tổ công tác

    có 12C5 cách chọn 5 người còn lại

    Với mỗi tổ công tác có 6 cách chọn tổ trưởng

    => có tất cả 6(12C6+12C5+12C5)=15048

    Bình luận

Viết một bình luận