N= $\frac{9}{1X6}$ + $\frac{9}{6X12}$ + $\frac{9}{12X18}$+……+ $\frac{9}{92X98}$ 14/08/2021 Bởi Adalynn N= $\frac{9}{1X6}$ + $\frac{9}{6X12}$ + $\frac{9}{12X18}$+……+ $\frac{9}{92X98}$
`N=9/ (1.6) + 9/(6.12) + 9/(12.18) + …+ 9/(92.98)`` = 9/(1.6) + (9/(6.12) + 9/(12.18) + …+ 9/(92.98))`` =3/2 + 9/6 . (6/(6.12) + 6/(12.18) + …+ 6/(92.98))`` = 3/2 + 9/6 . (1-1/12 + 1/12 – 1/18 + … + 1/92 – 1/98)`` = 3/2 + 9/6 . (1-1/98)`` = 3/2 + 9/6 . 97/98`` = 3/2 + 291/196`` = 585/196` Vậy `N=585/196` Bình luận
Đáp án: `N=585/196` Giải thích các bước giải: `N=9/1.6+9/6.12+9/12.18+…+9/92.98` `=9/1.6+(9/6.12+9/12.18+…+9/92.98)` `= 3/2 + 9/6 . (1-1/12 + 1/12 – 1/18 + … + 1/92 – 1/98)` `= 3/2 + 9/6 . (1-1/98)` `=3/2+9/6*97/98` `=3/2+291/196` `=585/196` Bình luận
`N=9/ (1.6) + 9/(6.12) + 9/(12.18) + …+ 9/(92.98)`
` = 9/(1.6) + (9/(6.12) + 9/(12.18) + …+ 9/(92.98))`
` =3/2 + 9/6 . (6/(6.12) + 6/(12.18) + …+ 6/(92.98))`
` = 3/2 + 9/6 . (1-1/12 + 1/12 – 1/18 + … + 1/92 – 1/98)`
` = 3/2 + 9/6 . (1-1/98)`
` = 3/2 + 9/6 . 97/98`
` = 3/2 + 291/196`
` = 585/196`
Vậy `N=585/196`
Đáp án:
`N=585/196`
Giải thích các bước giải:
`N=9/1.6+9/6.12+9/12.18+…+9/92.98`
`=9/1.6+(9/6.12+9/12.18+…+9/92.98)`
`= 3/2 + 9/6 . (1-1/12 + 1/12 – 1/18 + … + 1/92 – 1/98)`
`= 3/2 + 9/6 . (1-1/98)`
`=3/2+9/6*97/98`
`=3/2+291/196`
`=585/196`