Nâng cao lớp 5 nha
Cho tổng : 1 + 2 + 3 + 4 + 5 + … + 49 + 50. Liệu có thể liên tục thay hai số bất kì bằng hiệu của chúng cho tới khi được kết quả là 0 hay không?
Nâng cao lớp 5 nha
Cho tổng : 1 + 2 + 3 + 4 + 5 + … + 49 + 50. Liệu có thể liên tục thay hai số bất kì bằng hiệu của chúng cho tới khi được kết quả là 0 hay không?
Ta đặt A = $1$ + $2$ + $3$ + $4$ + $5$ + … + $49$ + $50$. Dãy số tự nhiên liên tiếp từ 1 đến 50 có $50$ số, trong đó số các số lẻ bằng số các số chẵn nên có $50$ : $2$ = $25$ (số lẻ). Vậy A là một số lẻ. Gọi a và b là hai số bất kì của A, khi thay tổng a + b bằng hiệu a – b thì A giảm đi: (a + b) – (a – b) = $2$ x b tức là giảm đi một số chẵn. Hiệu của một số lẻ và một số chẵn luôn là một số lẻ nên sau mỗi lần thay, tổng mới vẫn là một số lẻ. Vì vậy không bao giờ nhận được kết quả là $0$.
hok tốt
No copy
cho mk ctlhn nhé
Đáp án:
Ta đặt A = 1 + 2 + 3 + 4 + 5 + … + 49 + 50.
Dãy số tự nhiên liên tiếp từ 1 đến 50 có 50 số, trong đó số các số lẻ bằng số các số chẵn nên có 50 : 2 = 25 (số lẻ).
=> A là một số lẻ.
Gọi a và b là hai số bất kì của A, khi thay tổng a + b bằng hiệu a – b thì A giảm đi: (a + b) – (a – b) = 2 x b tức là giảm đi một số chẵn.
Hiệu của một số lẻ và một số chẵn luôn là một số lẻ nên sau mỗi lần thay, tổng mới vẫn là một số lẻ.
=> Không bao giờ nhận được kết quả là 0.
cho mik ctlhn nhé!!!