nè mn giúp zới ik xin ó tìm m nguyên để hpt có nghiệm duy nhất nguyên mx + y = 3m – 1 và m bình – y = m + 1 10/11/2021 Bởi Audrey nè mn giúp zới ik xin ó tìm m nguyên để hpt có nghiệm duy nhất nguyên mx + y = 3m – 1 và m bình – y = m + 1
Đáp án: \(\left[ \begin{array}{l}m = 3\\m = – 5\\m = 1\\m = – 3\\m = – 2\end{array} \right.\) Giải thích các bước giải: \(\begin{array}{l}\left\{ \begin{array}{l}mx + y = 3m – 1\\{m^2}x – y = m + 1\end{array} \right.\\ \to \left\{ \begin{array}{l}\left( {{m^2} + m} \right)x = 4m\\{m^2}x – y = m + 1\end{array} \right.\\ \to \left\{ \begin{array}{l}m\left( {m + 1} \right)x = 4m\\y = {m^2}x – m – 1\end{array} \right.\\ \to \left\{ \begin{array}{l}x = \dfrac{4}{{m + 1}}\left( {DK:m \ne \left\{ { – 1;0} \right\}} \right)\\y = \dfrac{{4{m^2} – {m^2} – m – m – 1}}{{m + 1}}\end{array} \right.\\ \to \left\{ \begin{array}{l}x = \dfrac{4}{{m + 1}}\\y = \dfrac{{3{m^2} – 2m – 1}}{{m + 1}}\end{array} \right.\\Do:x \in Z\\ \to \dfrac{4}{{m + 1}} \in Z\\ \to m + 1 \in U\left( 4 \right)\\ \to \left[ \begin{array}{l}m + 1 = 4\\m + 1 = – 4\\m + 1 = 2\\m + 1 = – 2\\m + 1 = 1\\m + 1 = – 1\end{array} \right. \to \left[ \begin{array}{l}m = 3\\m = – 5\\m = 1\\m = – 3\\m = 0\left( l \right)\\m = – 2\end{array} \right.\\Thay:\left[ \begin{array}{l}m = 3\\m = – 5\\m = 1\\m = – 3\\m = – 2\end{array} \right.\\ \to \left[ \begin{array}{l}y = 5\\y = – 21\\y = 0\\y = – 16\\y = – 15\end{array} \right.\\KL:\left[ \begin{array}{l}m = 3\\m = – 5\\m = 1\\m = – 3\\m = – 2\end{array} \right.\end{array}\) Bình luận
Đáp án:
\(\left[ \begin{array}{l}
m = 3\\
m = – 5\\
m = 1\\
m = – 3\\
m = – 2
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
\left\{ \begin{array}{l}
mx + y = 3m – 1\\
{m^2}x – y = m + 1
\end{array} \right.\\
\to \left\{ \begin{array}{l}
\left( {{m^2} + m} \right)x = 4m\\
{m^2}x – y = m + 1
\end{array} \right.\\
\to \left\{ \begin{array}{l}
m\left( {m + 1} \right)x = 4m\\
y = {m^2}x – m – 1
\end{array} \right.\\
\to \left\{ \begin{array}{l}
x = \dfrac{4}{{m + 1}}\left( {DK:m \ne \left\{ { – 1;0} \right\}} \right)\\
y = \dfrac{{4{m^2} – {m^2} – m – m – 1}}{{m + 1}}
\end{array} \right.\\
\to \left\{ \begin{array}{l}
x = \dfrac{4}{{m + 1}}\\
y = \dfrac{{3{m^2} – 2m – 1}}{{m + 1}}
\end{array} \right.\\
Do:x \in Z\\
\to \dfrac{4}{{m + 1}} \in Z\\
\to m + 1 \in U\left( 4 \right)\\
\to \left[ \begin{array}{l}
m + 1 = 4\\
m + 1 = – 4\\
m + 1 = 2\\
m + 1 = – 2\\
m + 1 = 1\\
m + 1 = – 1
\end{array} \right. \to \left[ \begin{array}{l}
m = 3\\
m = – 5\\
m = 1\\
m = – 3\\
m = 0\left( l \right)\\
m = – 2
\end{array} \right.\\
Thay:\left[ \begin{array}{l}
m = 3\\
m = – 5\\
m = 1\\
m = – 3\\
m = – 2
\end{array} \right.\\
\to \left[ \begin{array}{l}
y = 5\\
y = – 21\\
y = 0\\
y = – 16\\
y = – 15
\end{array} \right.\\
KL:\left[ \begin{array}{l}
m = 3\\
m = – 5\\
m = 1\\
m = – 3\\
m = – 2
\end{array} \right.
\end{array}\)