oxy; (c): (x-3)^2+(y-5)^2=4
tìm ảnh của c qua phép dời hình được thực hiện liên tiếp phép quay tâm O góc 90 và phép tịnh tiến theo u(3;1)
oxy; (c): (x-3)^2+(y-5)^2=4
tìm ảnh của c qua phép dời hình được thực hiện liên tiếp phép quay tâm O góc 90 và phép tịnh tiến theo u(3;1)
Đáp án:
\(\left( {C”} \right):{\left( {x + 2} \right)^2} + {\left( {y – 4} \right)^2} = 4\)
Giải thích các bước giải:
$\begin{array}{l}
{\left( {x – 3} \right)^2} + {\left( {y – 5} \right)^2} = 4\,\left( C \right)\\
\left( C \right)\,co\,tam\,I\left( {3;5} \right),ban\,kinh\,R = 2\\
I’ = {Q_{\left( {O;{{90}^0}} \right)}}\left( I \right) \Rightarrow I’\left( { – 5;3} \right)\\
I” = {T_{\overrightarrow u }}\left( {I’} \right) \Rightarrow \left\{ \begin{array}{l}
{x_{I”}} = – 5 + 3 = – 2\\
{y_{I”}} = 3 + 1 = 4
\end{array} \right. \Rightarrow I”\left( { – 2;4} \right)\\
\left( {C”} \right)\,co\,tam\,I”\left( { – 2;4} \right),ban\,kinh\,R” = 2\\
\Rightarrow \left( {C”} \right):{\left( {x + 2} \right)^2} + {\left( {y – 4} \right)^2} = 4
\end{array}$
Tâm $I(3;5)$
$R=2$
Qua phép quay $I\to I’$:
$x_{I’}=3\cos 90-5\sin 90=-5$
$y_{I’}=3\sin 90+5\cos 90=3$
$\Rightarrow I'(-5;3)$
Qua phép tịnh tiến $I’\to I”$:
$I”(-5+3;3+1)=(-2;4)$
Vậy $(C”): (x+2)^2+(y-4)^2=4$