p= (1/ √x +1 – 2 √x -2/x √x – √x +x-1) ÷( 1/ √x-1-2/x-1) a) rút gọn p giúp mình với ạ!!! 29/10/2021 Bởi Audrey p= (1/ √x +1 – 2 √x -2/x √x – √x +x-1) ÷( 1/ √x-1-2/x-1) a) rút gọn p giúp mình với ạ!!!
Đáp án: $\begin{array}{l}Dkxd:x \ge 0;x \ne 1\\P = \left( {\dfrac{1}{{\sqrt x + 1}} – \dfrac{{2\sqrt x – 2}}{{x\sqrt x – \sqrt x + x – 1}}} \right):\left( {\dfrac{1}{{\sqrt x – 1}} – \dfrac{2}{{x – 1}}} \right)\\ = \left( {\dfrac{1}{{\sqrt x + 1}} – \dfrac{{2\sqrt x – 2}}{{\sqrt x \left( {x – 1} \right) + x – 1}}} \right):\left( {\dfrac{{\sqrt x + 1 – 2}}{{\left( {\sqrt x – 1} \right)\left( {\sqrt x + 1} \right)}}} \right)\\ = \left( {\dfrac{1}{{\sqrt x + 1}} – \dfrac{{2\sqrt x – 2}}{{\left( {\sqrt x + 1} \right)\left( {x – 1} \right)}}} \right).\dfrac{{\left( {\sqrt x – 1} \right)\left( {\sqrt x + 1} \right)}}{{\sqrt x – 1}}\\ = \dfrac{{x – 1 – 2\sqrt x + 2}}{{\left( {\sqrt x + 1} \right)\left( {x – 1} \right)}}.\left( {\sqrt x + 1} \right)\\ = \dfrac{{x – 2\sqrt x + 1}}{{x – 1}}\\ = \dfrac{{{{\left( {\sqrt x – 1} \right)}^2}}}{{\left( {\sqrt x – 1} \right)\left( {\sqrt x + 1} \right)}}\\ = \dfrac{{\sqrt x – 1}}{{\sqrt x + 1}}\end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
Dkxd:x \ge 0;x \ne 1\\
P = \left( {\dfrac{1}{{\sqrt x + 1}} – \dfrac{{2\sqrt x – 2}}{{x\sqrt x – \sqrt x + x – 1}}} \right):\left( {\dfrac{1}{{\sqrt x – 1}} – \dfrac{2}{{x – 1}}} \right)\\
= \left( {\dfrac{1}{{\sqrt x + 1}} – \dfrac{{2\sqrt x – 2}}{{\sqrt x \left( {x – 1} \right) + x – 1}}} \right):\left( {\dfrac{{\sqrt x + 1 – 2}}{{\left( {\sqrt x – 1} \right)\left( {\sqrt x + 1} \right)}}} \right)\\
= \left( {\dfrac{1}{{\sqrt x + 1}} – \dfrac{{2\sqrt x – 2}}{{\left( {\sqrt x + 1} \right)\left( {x – 1} \right)}}} \right).\dfrac{{\left( {\sqrt x – 1} \right)\left( {\sqrt x + 1} \right)}}{{\sqrt x – 1}}\\
= \dfrac{{x – 1 – 2\sqrt x + 2}}{{\left( {\sqrt x + 1} \right)\left( {x – 1} \right)}}.\left( {\sqrt x + 1} \right)\\
= \dfrac{{x – 2\sqrt x + 1}}{{x – 1}}\\
= \dfrac{{{{\left( {\sqrt x – 1} \right)}^2}}}{{\left( {\sqrt x – 1} \right)\left( {\sqrt x + 1} \right)}}\\
= \dfrac{{\sqrt x – 1}}{{\sqrt x + 1}}
\end{array}$