phân tích các đa thức sau thành nhân tử a;2x^8 b;x^2-8x-9 c;x^2+14x+48 d;4x^4-21x^y^2+y^4 e;x^5-5x^3+4x 18/08/2021 Bởi Ariana phân tích các đa thức sau thành nhân tử a;2x^8 b;x^2-8x-9 c;x^2+14x+48 d;4x^4-21x^y^2+y^4 e;x^5-5x^3+4x
Đáp án: $\begin{array}{l}a)2{x^8} = 2.{x^8}\\b){x^2} – 8x – 9\\ = {x^2} – 9x + x – 9\\ = x\left( {x – 9} \right) + x – 9\\ = \left( {x – 9} \right)\left( {x + 1} \right)\\c){x^2} + 14x + 48\\ = {x^2} + 6x + 8x + 48\\ = x\left( {x + 6} \right) + 8\left( {x + 6} \right)\\ = \left( {x + 6} \right)\left( {x + 8} \right)\\d)4{x^4} – 21{x^2}{y^2} + {y^4}\\ = {\left( {2{x^2}} \right)^2} – 2.2{x^2}.\frac{{21}}{4}{y^2} + \frac{{441}}{{16}}{y^4} – \frac{{425}}{{16}}{y^4}\\ = {\left( {2{x^2} – \frac{{21}}{4}{y^2}} \right)^2} – \frac{{425}}{{16}}{y^4}\\ = \left( {2{x^2} – \frac{{21}}{4}{y^2} – \frac{{\sqrt {425} }}{4}{y^2}} \right)\left( {2{x^2} – \frac{{21}}{4}{y^2} + \frac{{\sqrt {425} }}{4}{y^2}} \right)\\e){x^5} – 5{x^3} + 4x\\ = x\left( {{x^4} – 5{x^2} + 4} \right)\\ = x\left( {{x^4} – {x^2} – 4{x^2} + 4} \right)\\ = x\left( {{x^2} – 1} \right)\left( {{x^2} – 4} \right)\\ = x\left( {x – 1} \right)\left( {x + 1} \right)\left( {x – 2} \right)\left( {x + 2} \right)\end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
a)2{x^8} = 2.{x^8}\\
b){x^2} – 8x – 9\\
= {x^2} – 9x + x – 9\\
= x\left( {x – 9} \right) + x – 9\\
= \left( {x – 9} \right)\left( {x + 1} \right)\\
c){x^2} + 14x + 48\\
= {x^2} + 6x + 8x + 48\\
= x\left( {x + 6} \right) + 8\left( {x + 6} \right)\\
= \left( {x + 6} \right)\left( {x + 8} \right)\\
d)4{x^4} – 21{x^2}{y^2} + {y^4}\\
= {\left( {2{x^2}} \right)^2} – 2.2{x^2}.\frac{{21}}{4}{y^2} + \frac{{441}}{{16}}{y^4} – \frac{{425}}{{16}}{y^4}\\
= {\left( {2{x^2} – \frac{{21}}{4}{y^2}} \right)^2} – \frac{{425}}{{16}}{y^4}\\
= \left( {2{x^2} – \frac{{21}}{4}{y^2} – \frac{{\sqrt {425} }}{4}{y^2}} \right)\left( {2{x^2} – \frac{{21}}{4}{y^2} + \frac{{\sqrt {425} }}{4}{y^2}} \right)\\
e){x^5} – 5{x^3} + 4x\\
= x\left( {{x^4} – 5{x^2} + 4} \right)\\
= x\left( {{x^4} – {x^2} – 4{x^2} + 4} \right)\\
= x\left( {{x^2} – 1} \right)\left( {{x^2} – 4} \right)\\
= x\left( {x – 1} \right)\left( {x + 1} \right)\left( {x – 2} \right)\left( {x + 2} \right)
\end{array}$