Phân tích các đa thức sau thành nhân tử:
a) xy – 3x + 2y – 6
b) x^2y + 4xy + 4y – y^3
c) x^2 + y^2 + xz + yz + 2xy
d) x^3 + 3x^2 – 3x – 1
Phân tích các đa thức sau thành nhân tử:
a) xy – 3x + 2y – 6
b) x^2y + 4xy + 4y – y^3
c) x^2 + y^2 + xz + yz + 2xy
d) x^3 + 3x^2 – 3x – 1
xy – 3x + 2y – 6
= (xy – 3x) + (2y – 6)
= x(y – 3) + 2(y – 3)
= (y – 3)(x + 2)
b) x2y + 4xy + 4y – y3
= y(x2 + 4x + 4 – y2)
= y[(x2 + 4x + 4) – y2]
= y[(x + 2)2 – y2]
= y(x + 2 + y)(x + 2 – y)
c) x2 + y2 + xz + yz + 2xy
= (x2 + 2xy + y2) + (xz + yz)
= (x + y)2 + z(x + y)
= (x + y)(x + y + z)
d) x3 + 3x2 – 3x – 1
= (x3 – 1) + (3x2 – 3x)
= (x – 1)(x2 + x + 1) + 3x(x – 1)
= (x – 1)(x2 + 4x + 1)
`a)xy-3x+2y-6`
`=x(y-3)+2(y-3)`
`=(y-3)(x+2)`
`b)x^2y+4xy+4y-y^3`
`=y(x^2+4x+4-y^2)`
`=y[(x+2)^2-y^2]`
`=y(x-y+2)(x+y+2)`
`c)x^2+y^2+xz+yz+2xy`
`=x^2+2xy+y^2+z(x+y)`
`=(x+y)^2+z(x+y)`
`=(x+y)(x+y+z)`
`d)x^3+3x^2-3x-1`
`=x^3-1+3x^2-3x`
`=(x-1)(x^2+x+1)+3x(x-1)`
`=(x-1)(x^2+x+1+3x)`
`=(x-1)(x^2+4x+1)`