Phân tích đa thức sau thành nhân tử (x+2)(x+4)²(x+8)-63x² 4x⁴+81 09/07/2021 Bởi Kylie Phân tích đa thức sau thành nhân tử (x+2)(x+4)²(x+8)-63x² 4x⁴+81
$\begin{array}{l} \left( {x + 2} \right){\left( {x + 4} \right)^2}\left( {x + 8} \right) – 63{x^2}\\ = \left( {x + 2} \right)\left( {x + 8} \right){\left( {x + 4} \right)^2} – 63{x^2}\\ = \left( {{x^2} + 10x + 16} \right)\left( {{x^2} + 8x + 16} \right) – 63{x^2}\\ = \left( {t – x} \right)\left( {t + x} \right) – 63{x^2}\left( {t = {x^2} + 9x + 16} \right)\\ = {t^2} – {x^2} – 63{x^2} = {t^2} – 64{x^2}\\ = \left( {t – 8x} \right)\left( {t + 8x} \right)\\ = \left( {{x^2} + x + 16} \right)\left( {{x^2} + 17x + 16} \right) \end{array}$ $\begin{array}{l} 4{x^4} + 81\\ = 4{x^4} + 36{x^2} + 81 – 36{x^2}\\ = {\left( {2{x^2} + 9} \right)^2} – {\left( {6x} \right)^2}\\ = \left( {2{x^2} – 6x + 9} \right)\left( {2{x^2} + 6x + 9} \right) \end{array}$ Bình luận
`(x+2)(x+4)²(x+8)-63x²` `=(x^2+10x+16)(x^2+8x+16)-63x^2` `=(x^2+9x+16+x)(x^2+9x+16-x)-63x^2` `=(x^2+9x+16)^2-x^2-63x^2` `=(x^2+9x+16)^2-(8x)^2` `=(x^2+9x+16-8x)(x^2+9x+16+8x)` `=(x^2+x+16)(x^2+17x+16)` `4x⁴+81` `=4x⁴+81+36x^2-36x^2` `=(2x^2+9)^2-(6x)^2` `=(2x^2-6x+9)(2x^2+6x+9)` Bình luận
$\begin{array}{l} \left( {x + 2} \right){\left( {x + 4} \right)^2}\left( {x + 8} \right) – 63{x^2}\\ = \left( {x + 2} \right)\left( {x + 8} \right){\left( {x + 4} \right)^2} – 63{x^2}\\ = \left( {{x^2} + 10x + 16} \right)\left( {{x^2} + 8x + 16} \right) – 63{x^2}\\ = \left( {t – x} \right)\left( {t + x} \right) – 63{x^2}\left( {t = {x^2} + 9x + 16} \right)\\ = {t^2} – {x^2} – 63{x^2} = {t^2} – 64{x^2}\\ = \left( {t – 8x} \right)\left( {t + 8x} \right)\\ = \left( {{x^2} + x + 16} \right)\left( {{x^2} + 17x + 16} \right) \end{array}$
$\begin{array}{l} 4{x^4} + 81\\ = 4{x^4} + 36{x^2} + 81 – 36{x^2}\\ = {\left( {2{x^2} + 9} \right)^2} – {\left( {6x} \right)^2}\\ = \left( {2{x^2} – 6x + 9} \right)\left( {2{x^2} + 6x + 9} \right) \end{array}$
`(x+2)(x+4)²(x+8)-63x²`
`=(x^2+10x+16)(x^2+8x+16)-63x^2`
`=(x^2+9x+16+x)(x^2+9x+16-x)-63x^2`
`=(x^2+9x+16)^2-x^2-63x^2`
`=(x^2+9x+16)^2-(8x)^2`
`=(x^2+9x+16-8x)(x^2+9x+16+8x)`
`=(x^2+x+16)(x^2+17x+16)`
`4x⁴+81`
`=4x⁴+81+36x^2-36x^2`
`=(2x^2+9)^2-(6x)^2`
`=(2x^2-6x+9)(2x^2+6x+9)`