phân tích đa thức thành nhân tử `(x+1)(x+2)(x+3)(x+4)-24` 27/11/2021 Bởi Alaia phân tích đa thức thành nhân tử `(x+1)(x+2)(x+3)(x+4)-24`
Đáp án: `(x+1)(x+2)(x+3)(x+4)-24` `=[(x+1)(x+4)].[(x+2)(x+3)]-24` `=(x^2+5x+4)(x^2+5x+6)-24` Đặt `x^2+5x+4=a` `=a(a+2)-24` `=a^2+2a-24` `=a^2+6a-4a-24` `=a(a+6)-4(a+6)` `=(a+6)(a-4)` `=(x^2+5x+4+6)(x^2+5x+4-4)` `=(x^2+5x+10)(x^2+5x)` Bình luận
Đáp án:
`(x+1)(x+2)(x+3)(x+4)-24`
`=[(x+1)(x+4)].[(x+2)(x+3)]-24`
`=(x^2+5x+4)(x^2+5x+6)-24`
Đặt `x^2+5x+4=a`
`=a(a+2)-24`
`=a^2+2a-24`
`=a^2+6a-4a-24`
`=a(a+6)-4(a+6)`
`=(a+6)(a-4)`
`=(x^2+5x+4+6)(x^2+5x+4-4)`
`=(x^2+5x+10)(x^2+5x)`