Phân tích đa thức thành nhân tử ( x2 +6x +5b) (x2-x +1) (x2 –x+2) -1 08/07/2021 Bởi Caroline Phân tích đa thức thành nhân tử ( x2 +6x +5b) (x2-x +1) (x2 –x+2) -1
Đáp án: Giải thích các bước giải: `a,x^2+6x+5` `=x^2+x+5x+5` `=x(x+1)+5(x+1)` `=(x+1)(x+5)` `b,(x^2-x+1)(x^2-x+2)-12` `=(x^2-x+3/2-1/2)(x^2-x+3/2+1/2)-12` `=(x^2-x+3/2)^2-1/4-12` `=(x^2-x+3/2)^2-49/4` `=(x^2-x+3/2+7/2)(x^2-x+3/2-7/2)` `=(x^2-x+5)(x^2-x-2)` `=(x^2-x+5)(x^2+x-2x-2)` `=(x^2-x+5)[x(x+1)-2(x+1)]` `=(x^2-x+5)(x+1)(x-2)` CHÚC BẠN HỌC TỐT Bình luận
`a) x^2+6x+5` `=x^2+x+5x+5` `=x.(x+1)+5(x+1)` `=(x+1).(x+5)` `b) (x^2-x+1)(x^2-x+2)-12` `=(x^2-x+3/2-1/2).(x^2-x+3/2+1/2)-12` `=(x^2-x+3/2)^2-49/4` `=(x^2-x+3/2+7/2).(x^2-x+3/2-7/2)` `=(x^2-x+5).(x^2-x-2)` `=(x^2-x+5).(x^2+x-2x-2)` `=(x^2-x+5).[x(x+1)-2(x+1)]` `=(x^2-x+5).(x+1).(x-2)` Bình luận
Đáp án:
Giải thích các bước giải:
`a,x^2+6x+5`
`=x^2+x+5x+5`
`=x(x+1)+5(x+1)`
`=(x+1)(x+5)`
`b,(x^2-x+1)(x^2-x+2)-12`
`=(x^2-x+3/2-1/2)(x^2-x+3/2+1/2)-12`
`=(x^2-x+3/2)^2-1/4-12`
`=(x^2-x+3/2)^2-49/4`
`=(x^2-x+3/2+7/2)(x^2-x+3/2-7/2)`
`=(x^2-x+5)(x^2-x-2)`
`=(x^2-x+5)(x^2+x-2x-2)`
`=(x^2-x+5)[x(x+1)-2(x+1)]`
`=(x^2-x+5)(x+1)(x-2)`
CHÚC BẠN HỌC TỐT
`a) x^2+6x+5`
`=x^2+x+5x+5`
`=x.(x+1)+5(x+1)`
`=(x+1).(x+5)`
`b) (x^2-x+1)(x^2-x+2)-12`
`=(x^2-x+3/2-1/2).(x^2-x+3/2+1/2)-12`
`=(x^2-x+3/2)^2-49/4`
`=(x^2-x+3/2+7/2).(x^2-x+3/2-7/2)`
`=(x^2-x+5).(x^2-x-2)`
`=(x^2-x+5).(x^2+x-2x-2)`
`=(x^2-x+5).[x(x+1)-2(x+1)]`
`=(x^2-x+5).(x+1).(x-2)`