Phân tích đa thức thành nhân tử: x^3+3x^2y+x+3xy^2+y+y^3 29/07/2021 Bởi Madeline Phân tích đa thức thành nhân tử: x^3+3x^2y+x+3xy^2+y+y^3
Đáp án: $(x+y)(x^2+y^2+2xy+1)$ Giải thích các bước giải: $x^3+3x^2y+x+3xy^2+y+y^3$ $=(x^3+3x^2y+3xy^2+y^3)+(x+y)$ $=(x+y)^3+(x+y)$ $=(x+y)[(x+y)^2+1]$ $=(x+y)(x^2+y^2+2xy+1)$ Chúc bạn học tốt !!! Bình luận
Đáp án:
$(x+y)(x^2+y^2+2xy+1)$
Giải thích các bước giải:
$x^3+3x^2y+x+3xy^2+y+y^3$
$=(x^3+3x^2y+3xy^2+y^3)+(x+y)$
$=(x+y)^3+(x+y)$
$=(x+y)[(x+y)^2+1]$
$=(x+y)(x^2+y^2+2xy+1)$
Chúc bạn học tốt !!!